
In Situ Programmable

SoC Design Space Exploration

Supervisor: Dr. Benjamin Carrion Schafer

Student: Siyuan XU

Major: Electronic and Information Engineering

Thesis Architecture

Introduction1

2

3

4

High Level Synthesis

Configurable System-on-Chip

5

AS2CBench

6

7

In Situ DSE

Conclusions and Future Work

Introduction

Gordon Moore: co-founder of Intel

Predicted that number of

transistors per chip would

grow exponentially (double

every 18-24 months).

Introduction

Most circuits are now heterogeneous Multiprocessor

Systems-on-Chips (MPSoCs)

1. Embedded microprocessors.

2. Memory controllers.

3. Memories .

4. Dedicated hardware accelerators.

Introduction

Due to the pressure to tape-out these chips at shorter

design cycles, companies often rely on third party

Intellectual Properties (3PIPs) to meet their tight schedules.

High-Level Synthesis (HLS) to increase their design productivity.

At the same time SystemC (C++ class for HW design) has emerged as

a common language for these HLS tools

In 2013, S2CBench benchmark suite Release

Contribution --1

Test cases to perform HLS Design Space Exploration (DSE)

experiments at the department.

S2CBench benchmark suite

Deals with HW/SW co-design

In particular system-level DSE.(CSoC)

No available benchmarks are available

AS2CBench benchmark suite

Benchmark suite for HW/SW co-design,

especially on CSoCs

Contribution --2

A Cycle-Accurate Model

1 . Slow :

PC executes sequentially

2. Can’t be exactly modeled,

Hence the results can slightly differ.
PC

Prototyping on real configurable SoCs,

e.g. Altera’s Cyclone V SoC or Xilinx’s Zynq FPGA.

It would be interesting to compare the simulation

based results with the prototyped ones.

100% Accurate

Actual final platform

The following will introduce how HLS is applied in HW/SW design

on heterogeneous system.

By 2020 a 10x productivity increase is needed

International Technology Roadmap for Semiconductors

(ITRS)

Designing complex SoCs

Re-use of components New design methodologies.

i.e. HLS

Raise abstraction level

High Level Synthesis Introduction

Behavioral Model

(ANSI-C/C++/SystemC)

High Level Synthesis

Register Transfer Level (RTL)

(Verilog/VHDL)

Logic Synthesis

Gate Level Netlist

Physical Synthesis

(Place and Route)

GDSII/Bitstream

(ASIC/FPGA)

Why HLS?

1. Reduces the complexity of hardware design

2. Less number of lines of code are required.

3. Less bug..

4. Easy to verify

1. Allocation

2. Scheduling

3. Binding

High Level Synthesis Introduction

Allocation

Scheduling

Binding

Mul #1

Add #1

High Level Synthesis Introduction

 Area vs. Performance trade-offs

 Without having to modify the original behavioral description.

Behavioral Model

(ANSI-C/C++/SystemC)
Function Inline or Not

Different Constrain File

Unroll loops or Not

RTL
RTL RTL RTL RTL

 This unique features will be leveraged in the thesis.

/* Cyber func=inline*//* Cyber unroll_times=0*/

/*Cyber array =RAM*/

FPGA Basic Structure

1. 4-input 1-output LUT.

2. Flip-Flop(FF) to register the LUT output.

3. Multiplex(Mux) to use registered output or non-registered.

FPGA Basic Structure

In 1984, Xilinx introduced the modern Look up Table (LUT)

based FPGA architecture.

FPGA Basic Structure

Map the following gate

netlist onto a 4-input LUT

FPGA

Configurable System-on-Chip

AS2CBench

Sobel: Sobel is a 3x3 edge detection filter.

Qsort: Sorts packets of ten numbers in

ascending order using a quicksort

algorithm.

Kasumi: Kasumi is a block cipher algorithm

used in mobile communication

systems.

snow3G: Snow3G is a stream cipher which

produces a key stream

consisting of 32-bit blocks using a 128-bit key.

Interp: This design is a 4-stage interpolation

filter

Ann: Artificial Neuronal Networks (ANN)

IDCT: IDCT is a inverse discrete cosine

transform

Adpcm: Adaptive Differential Pulse-Code

Modulation

Disparity: This program estimates the

disparity in a stereoscopic image.

AS2CBench

Accelerated Synthesizable SystemC benchmark suite

The benchmarks are open source and can be downloaded from [2].

AS2CBench

Master

for(num=0;num<WDSIZE;num++){

alt_write_word(h2p_lw_UUT_addr,WData[num]);

}

while(1){

outvalid=alt_read_word(h2p_lw_outvalid_addr);

if（outvalid==True）{

for(num=0;num<RDSIZE;num++){

alt_write_word(h2p_lw_outvalid_addr,true);

UUT_out[num] =alt_read_word(h2p_lw_UUT_addr);

}

break; }

}

Slave
while (1) {

input_valid=input_valid_signal.read();/* get status */

if (input_valid == True) {

WData[num]=UUT_in.read();

if ((++num) == WDSize) break;}

}

******** Computation Omitted ********\

output_valid_signal.write(True);

while(1){

output_control =output_control_signal.read();

if (output_control == True) {

UUT_out.write(RData[num]);

if ((++num) == RDSize) break;}

}

0% … 45% ... …… 100%

32bit AXI Bus

Sobel Disparity

Multi-process Design

FIR Sobel

UUT_FIR UUT_Sobel

Bus

In this work, a design in which two of benchmarks are

executed concurrently is also included in the benchmark

suite.

In particular the FIR and sobel filter (FIR+sobel).

AS2CBench Result
The first 3 versions are pure SW versions, while the last is the

proposed accelerated version

I7 processor ARM Cortex A-9 ARM Cortex A-9+FPGA

ANSI-C ANSI-C ANSI-C +SystemCSystemC

gcc gccg++ gcc + HLS

AS2CBench Result

Spend long time sending and receiving data and hence the

communication overhead weights down any potential speed-up.

There are four notable exceptions:

snow3G, aes (cipher and decipher) and the disparity estimator.

AS2CBench Result

looks closer at the comparison between these two versions

(ARM vs. ARM+FPGA)

speed-up of 15%

 The salient point here is that for smaller designs with very small

latencies, the pure SW version achieves better results and hence it

does not make sense to have an accelerated HW version.

E.g. the aes has to perform 9 times the subbyte, shiftrows, mixcolumns

and addroundkey functions before returning the result to the processor.

AS2CBench Result

HLS >>> different area vs. performance trade-offs

without having to modify the behavioral description.

4% difference.

AS2CBench

The source code is open source and fully available at [2],

FPGA configuration file (SOF)

pre-compiled SW program (EXE),

which allow to immediately have a HW/SW co-designing system up

and running.

In Situ CSoCs-Based DSE

Motivation and Target Platform

The main aim of the work is to find a trade-off curve

of optimal multiprocessor systems

Observation 1:

Using less processors should lead to

systems with lower overall throughput.

Observation 2:

lowest latency (All case) – High Throughput

Largest latency (All case) – Low Throughput

In Situ CSoCs-Based DSE

Different Mapping

Numbers of mappings in each case can be calculated as [35]:

Mapping : 1 7 6 1

In Situ CSoCs-Based DSE

BF(Brute Force Search) Fast In Situ System Explorer

1 2,3,4

1 3,2,4

1,2 3,4

2,1 4,3

1,2,3 4

2,3,4 1

ARM1 ARM2

……

……

……

……

All Permutations

Stirling Number of

Second Kind

1 2,3,4

1,2 3,4

1,2,3 4

ARM1 ARM2

……

……

……

……
Stirling

Number of

Second Kind

Every optimal solution

In Situ CSoCs-Based DSE

1. All possible permutations

2. All different Mapping

The sterling number of second kind mappings is enough

periodically repeating task execution

Exploration

A
re

a
[L

U
Ts

]

Throughput

P=M-1 P=M

Amax

Amin

P=M+1

Design
Space

A
re

a

Latency

BIP1

A
re

a

Latency

BIPN

BIP trade-off curves

This step continues until the smallest configuration with the same

performance of the configuration composed of the largest, but

fastest designs of each BIP is found.

Result

When synthesized in Quartus II 15.0,

The Logic utilization (in ALMs) for the largest system is :

30,989 / 32,070 (97 %)

HLS tool : CyberWorkBench v.5.4 from NEC

Altera

Cyclone V SoC

--- dual-core ARM

Cortex A-9 processor

(Ubuntu 32Bit Machine)

-- Aes_cipher is the Advanced Encryption Standard algorithm

-- Aes_decipher the aes decryption part of aes.

-- Qsort is a quick sort algorithm

-- interp a 4 stage interpolation filter.

Result

1. Hypervolume: The smaller the value, the higher the

quality of the result is.

2. Pareto Dominance: This index is equal to the ratio

between the total number of points in the Pareto set

being evaluated, also present in th reference Pareto

set. The higher the value, the better the Pareto set is.

2/9

Result

-- up to 42% for the BF case

-- up to 33% for our fast method,

while on average by 23% and 20% respectively.

Result

on average only 3% worse while on average 15× faster,

showing that it can lead to very good results quickly.

Result

Fig. 6.4: System Exploration trade-off curves for each benchmark for 1 processor

(P=1) and 2 processors (P=2) comparing the brute force (BF) and our

proposed fast heuristic (FISSE). Page 49

Conclusions and Future Work

 This thesis first presented an accelerated version of the

S2CBench benchmark suite to experiment on HW/SW co-

design for configurable SoCs(CSoC).

 Secondly, and the main contribution, is the development of a

fast method to characterize complete HW/SW systems mapped

onto these CSOCs using Behaviors IPs as slaves to accelerated

different tasks.

Conclusions and Future Work

Future work

① larger CSoC with more than 2 HPS

② Comparing the efficiency of our proposed

method compared to a offline simulation.

Publication

 S. XU, B. Carrion Schafer, "AS2CBench:Accelerated

Synthesizable SystemC Benchmark Suite for HW/SW

Co-design", under review.

 S. XU, Y. Liu, B. Carrion Schafer, "In-situ C-based

Configuration SoCs Design Space Exploration",

submitted.

Reference

Refer to the Thesis P.55-P.56

……

