Automatic Acceleration of Computationally Intensive Applications onto an FPGA ^{Wong Po Ping} ^{13038118D} Supervisor: Dr. Benjamin Carrion Schafer

- Introduction
- Interface on PC and FPGA
- Evaluation

Introduction

- 1. Extract the computationally intensive function
- 2. Convert the C function into VHDL
- 3. Configure the FPGA
- 4. Execute the program with FPGA
- 5. Conduct evaluation

Introduction

- PC
 - CPU @ 3.0 GHz
- FPGA
 - Xilinx ML402 Virtex-4 SX Evaluation Platform
 - XC4VSX35

Hardware

- Software Profiler
 - gprof

Each sample counts as 0.01 seconds.

%	cumulative	self		self	total	
time	seconds	seconds	calls	ns/call	ns/c	all name
66.67	0.02	0.02	261632	76.44	76.44	soebel
33.33	0.03	0.01				main
0.00	0.03	0.00	1	0.00	0.00	LoadBitmapFile

Function Extraction

- Modify C into HW-C
- High Level synthesis tool
 - CyberWorkBench

Conversion (C->VHDL)

- Pins Assignment
 - Clock (AE14), reset (D6), Rx (W2), Tx (W1)
 - Led indicators (G5, G6, A11, A12)
- Clock frequency = 100 MHz

Configuration of FPGA

- 115200 Baud rate
- 8 Date bits
- 1 Stop bit
- No Parity bit

UART

Interface on FPGA

• C API

- serial_open Configure the serial communication
- serial_send Send 1 byte
- serial_receive Receive 1 byte
- serial_close Close the COM port

Interface on Host

- 3 8-bit inputs; 1 8-bit output
- Data bits = (512 x 512) x 8 x 4 = 8388608 bits
- Each frame: 8 data bits, 1 start bit, 1 stop bit
- Bandwidth
 - = 80% of baud rate = 115200 x 0.8 = 92160 bps
- Transmission time = 8388608 / 92160 = 91s

Theoretical estimation

- SW execution time = 0.0469s
- SW and HW execution time = 197.5s
- Speedup = 0.000237

=> Slower than the SW only program

Evaluation

- Some parts of the function remain sequential
- UART is too slow

Critical Problem

- USB
- PCI
- PCI-X

Alternatives

- UART 0.011 MB/s
- USB 2.0 60 MB/s
- PCI 2.0 133 MB/s
- PCI-X 2.0 4300 MB/s

Theoretical Bandwidth

Source form: http://www.pixelbeat.org/speeds.html

