
1

DARClab Newcomer’s Manual

Version Date Prepared by Comments

1.0 18/8/2014 BCS Initial document

1.1 5/9/2016 BCS Changes for UTD

Welcome to PolyU’s DARClab (Design Automation and Reconfigurable Computing Laboratory).

This document describes the most important software that you will need in order to efficiently

progress with your project and how to set it up. You can also visit your department’s YouTube

channel for videos regarding how to use some of the EDA tools and how to set up the machines

at www.youtube.com/user/DARClabify.

1. Connect your local Windows PC to the DARClab’s Linux machines using Cygwin

The DARClab has currently 3 Linux servers on which the EDA tools run: (1)

tools.eie.polyu.edu.hk, (2) legolas.eie.polyu.edu.hk and (3) gandalf.eie.polyu.edu.hk.

The tools machine is used as a gateway and is the only one through which you will be able to

connect to our Linux system.

Note: Because tools is an old machine do not used it to run long simulations/synthesis. The

legolas and gandalf machines are the fastest and should be normally used for long jobs.

To log into the system you will need to install Cygwin from www.cygwin.com. Make sure you

install the correct version based on your OS, setup-x86.exe for 32-bit or setup-x86_64.exe for

64-bits.

When you install Cygwin, make sure to select the full X11 packages at the end of the package

list (click on the X11 package family until “install” appears)

http://www.youtube.com/user/DARClabify
http://www.cygwin.com/

2

The installation process might take some time depending on the server selected and the

internet traffic.

By default Cygwin will be installed in c:\cgwin. In the bin directory you will find the xlaunch.exe

and xwin.exe binaries. The first allows you to configure the connection and the latter starts the

Windows server. You can also create a shortcut on your desktop, e.g. “C:\cygwin64\bin\run.exe

-p /usr/X11R6/bin XWin –multiwindow”

Once Cygwin is installed, you can connect to the DARClab’s Linux machines if the system

administrator has created an account for you. Click on XWin. It will launch the XWin server as

shown below:

Right-click on the XWin icon and launch a terminal (xterm)

3

This will open a terminal window as shown below:

To connect to the Linux machines you need to connect to the tools server once you have a

valid account. In order to allow applications with a graphical user interface to be displayed on

your local host you need to type the following BEFORE you try to connect.

 $xhost +

Then log using ssh as follows:

 $ssh username@tools.eie.polyu.edu.hk

Enter your password and you will be connected to your home directory at the tools machine.

You can FTP files between the Windows and Linux environment by downloading one of the

many free FTP clients available online e.g. WinSCP (http://winscp.net/eng/index.php)

4

2. Setting up the Linux Environment

One of the most important files in Linux is the .bashrc file in your home directory. It is loaded

every time you log in and contains the environment variables and paths to all the tools. Every

time this file is modified it needs to be reloaded (sourced):

 username@tools:~>source .bashrc

If it is the very first time you log into the system you will need to add the following paths to

your .bashrc file in EACH of the 3 machines (tools, legolas and gandalf) separately. You can

use Linux’s vi text editor or xemacs

 username@tools:~>xemacs ~/.bashrc &

Automatically set DISPLAY variable

if [! $DISPLAY] ; then

 if ["$SSH_CLIENT"] ; then

 export DISPLAY=`echo $SSH_CLIENT|cut -f1 -d\ `:0.0

 fi

fi

Set path for Altera

export PATH=$PATH:/eda/bin/altera/12.0/quartus/bin

export PATH=$PATH:/eda/bin/altera/12.0/nios2eds/bin

export LM_LICENSE_FILE=$LM_LICENSE_FILE:18000@eda.eie.polyu.edu.hk

#Set path for Xilinx

export PATH=$PATH:/eda/bin/xilinx/Vivado/2012.2/bin #vivado

export PATH=$PATH:/eda/bin/xilinx/Vivado_HLS/2012.2/bin #vivado_hls

export PATH=$PATH:/eda/bin/xilinx/14.3/ISE_DS/ISE/bin/lin #ise

export PATH=$PATH:/eda/bin/xilinx/14.3/ISE_DS/common/bin/lin #ise utilities - license mananger xlcm

export LM_LICENSE_FILE=$LM_LICENSE_FILE:2100@eda.eie.polyu.edu.hk

#Set path for Mentor's Modelsim

export PATH=$PATH:/eda/bin/altera/12.0/modelsim_ase/bin

#set SystemC path

#export PATH=$PATH:/eda/bin/systemc/systemc-2.3.0

#export SYSTEMC_HOME=/eda/bin/systemc/systemc-2.3.0

#export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$SYSTEMC_HOME/lib_linux

export PATH=$PATH:/eda/bin/cwb/cyber/osci

export SYSTEMC_HOME=/eda/bin/cwb/cyber/osci

export TLM_HOME=$SYSTEMC_HOME/TLM-2009-07-15

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$SYSTEMC_HOME/lib-linux

#Version CWB 5.4

export CYBER_PATH=/eda/bin/cwb/cyber_540/LINUX

export CYBER_SYSTEMC_HOME=${CYBER_PATH}/osci

export CYBER_LIB=${CYBER_PATH}/lib

export LD_LIBRARY_PATH=${CYBER_PATH}/lib:${LD_LIBRARY_PATH}

export CYLMD_LICENSE_FILE=27000@eda.eie.polyu.edu.hk

export LM_LICENSE_FILE=$LM_LICENSE_FILE:27000@argus.eie.polyu.edu.hk

export PATH=$PATH:${CYBER_PATH}/bin

5

#Graphviz

export PATH=$PATH:/eda/bin/xilinx/Vivado_HLS/2012.3/Linux_x86/tools/graphviz/bin

#Aldec Riviera-Pro

export PATH=$PATH:/eda/bin/aldec/riviera-pro-2012.10/bin

export ALDEC_LICENSE_FILE=27009@eda.eie.polyu.edu.hk

Save the changes and source the new .bashrc file

Log in to legolas.eie.polyu.edu.hk and gandalf.eie.polyu.edu.hk and modify the .bashrc file as

done for the tools machine. To log into the other machines:

 username@tools:~>ssh -Y <username>@legolas.eie.polyu.edu.hk

and

 username@tools:~>ssh -Y <username>@gandalf.eie.polyu.edu.hk

Note: Do not forget the option “-X” when calling ssh. This option re-directs the graphical

display to your local machine.

You need to update the .bashrc file with

Automatically set DISPLAY variable

if [! $DISPLAY] ; then

 if ["$SSH_CLIENT"] ; then

 export DISPLAY=`echo $SSH_CLIENT|cut -f1 -d\ `:0.0

 fi

fi

to allow GUI forwarding

The legolas.eie.polyu.edu machine has been setup as a fileserver. That means that the files

stored on this machine will be automatically mounted on the tools and Gandalf machine when

logged in. Therefore when logging into tools or gandalf you will encounter two home folders:

 /home/<username>

 /home_mnt/<username>

The best way to work more efficient is to create a folder at the /home directory and create a

symbolic link between this folder and the /home_mnt folder. This will link the folder’s contents

to the legolas machine file structure and you will be able to access all the legolas’ files from

any machine. E.g.

 username@legolas:~>mkdir common

6

Log in to tools and gandalf:

 username@tools:~>ln –s /home_mnt/<username>/common common

The symbolic link can anytime be deleted without deleted the files it is pointing to. Also a single

folder within legolas can be shared this way.

You can also move files across the machines using the scp command. E.g. for moving a

complete folder form the tools to Gandalf machine.

username@tools:~> scp –r /folder <username>@gandalf.eie.polyu.edu.hk:/home/<username>/<dest>

7

3. Software development in Linux

All of the design automation software done at the laboratory will be developed on the Linux

machines. The following YouTube video contains a similar context as this section

https://www.youtube.com/watch?v=B6o4oX_ZrjE

Most of the SW will be written in ANSI-C/C++. The main tools used will be:

 Text editor to write the Program (typically xemacs)

 Compilers gcc for ANSI-C compilation and g++ for C++ (free in Linux)

 make. Linux make utility, which reads a Makefile and calls gcc

 gdb for debugging (free in Linux)

 ddd (graphical user interface of gdb)

Xemacs/emacs:

Xemacs is a highly configurable text editor. Launch it by typing:

 username@tools:~>xemacs filename.c &

Xemacs might be difficult to use at the very beginning because the shortcuts are different from

the typical text editors, but once you master it, it will become extremely powerful. It can be

configured by downloading different packages to e.g. highlight source code:

This will create a configuration file in your home directory:

 username@tools:~>ls ./xemacs/init.el

https://www.youtube.com/watch?v=B6o4oX_ZrjE

8

This file can be manually configured or overwritten. Set xemacs up in a way that you fill

comfortable working with. You can e.g. google other init.el files and overwrite yours.

Makefile:

A Makefile contains the instructions for Linux’s ‘make’ utility to compile a given program.

Whenever you have finished writing a program, create a Makefile as follows

Note: Makefiles can be very complicated and have many options. The syntax is also very

strict e.g. A tab is not the same as a space

Source, Executable, Includes, Library Defines

TARGET= dse.exe

INCL = \

 dse.h

SRCS = \

 dse.c \

 ant_colony.c

OBJS = $(SRCS:.c=.o)

Compiler, Linker Defines

CC = /usr/bin/gcc

LINKER = $(CC)

CFLAGS= -ansi -pedantic -Wall -O3

debug : CFLAGS += -g -DDEBUG

RM = /bin/rm -f

Link all Object Files with external Libraries into Binaries

$(TARGET): $(OBJS)

 $(LINKER) -o "$@" $(OBJS)

Create a gdb/dbx Capable Executable with DEBUG flags turned on

debug: $(OBJS)

 $(LINKER) -o $(TARGET) $(OBJS)

dse.o: dse.c

 $(CC) $(CFLAGS) -c $< -o $@

ant_colony.o: ant_colony.c

 $(CC) $(CFLAGS) -c $< -o $@

Clean Up Objects, Exectuables, Dumps out of source directory

clean:

 $(RM) $(OBJS) $(TARGET)

The Makefile is useful especially for larger projects and when different versions of the same

program need to be created. E.g. a debug version and a release version. In this case when

wanting to debug the program the following would be typed:

 username@tools:~>make debug

9

This compiles the source code including the “debug” options specified. In this case “-g” and

 “–DDebug”.

-g: debug command for gcc. Generates the debug version of the program which can be

debugged using gdb/ddd

-DDebug: gcc compiles the source code enabling any source code within the DEBUG pre-

copmiler directive. E.g.

#ifdef DDEBUG

 printf(“\nThis part of the code will be displayed in the debug version\n”);

#else

 printf(“\nNow we are in the release version\n”);

#endif

To delete all object files type:

 username@tools:~>make clean

Note: If the file is not called Makefile you need to type: $make –f <name_of_file> debug

gdb/ddd

gdb is the most widely used software debugger in Linux. It is command based and therefore

not very easy to use. For this purpose ddd was developed as a GUI for gdb. To debug a

software application using ddd you need to compile first the program with the debug option “-

g” enabled and type:

 username@tools:~>ddd dse.exe &

This will open the debugger where you can set breakpoints, display variables values, etc….

10

4. EDA Tools

The main EDA tools installed on the Linux system are:

Vendor Tool name Launch tool Description

NEC CyberWorkBench %cwb & High-Level Synthesis tool

Xilinx ISE %ise & FPGA’s Logic synthesis for Xilinx FPGAs

Altera Quartus %quartus & Logic synthesis Altera’s FPGA synthesis

Aldec Riviera-PRO %riviera & RTL simulator

The GUI of these tools should be displayed on your remote machines if you have specified:

 %xhost + once before logging to the Linux system

 specifying “ssh –X” each time you connect from one machine to another

 Setting automatically the DISPLAY variable in the .bashrc

CyberWorkBench (CWB):

CWB is a large tool comprised of many binaries all integrated other the IDE. When creating

your own automation programs, you will need to call these tools within your C/C++ program.

The most important tools are:

Tool Input Output Example Description

scpars SystemC file .IFF file %scpars foo.cpp SystemC parser

bdlpars ANSI-C/BDL fil .IFF fil %bdlpars foo.c ANSI-C/BDL parser

bdltran .IFF _C.IFF/_E.IFF %bdltran –c1000 –s

foo.IFF –Zflib_fcnt_out

Main synthesis engine.

Needs to be called 2

times (see below for

explanation)

veriloggen _E.IFF _E.v %veriloggen foo_E.IFF Bdltran Verilog

generation backend

vhdlgen _E.IFF _E.vhd %vhdlgen foo_E.IFF Bdltran VHDL generation

backend

cmscgen _C.IFF .cpp %cmscgen foo_C.IFF Generates cycle-

accurate SystemC

model for verification

tbgen _E.IFF .v/.vhd %tbgen foo_E.IFF Generates RTL

testbench

11

LSscrgen _E.IFF .tcl %LSscrgen foo_E.IFF Generates synthesis

script for logic

synthesizer (DC, ISE,

Quartus, etc..)

More information about each of these tools can be found in the user manuals or by typing the

tool’s name –h. E.g. %scpars -h

Bdltran is the main synthesis engine and needs to be called twice. The first time if generates

the Functional Units (FUs) resource constraint file and the second it uses this file to synthesizes

the description.

To manually synthesize a design from the command file:

%bdlpars foo.c

>> Generates foo.IFF file

%bdltran –c1000 –s –lfl asic_45.FLIB –lb asic_45.BLIB foo.IFF –Zflib_fcnt_out –Zmlib_mcnt_out

>> Generates foo-auto. FCNT (resource constraint file) , foo-auto.FLIB (if needed, normally empty),

foo-auto. MLIB and foo-auto.MCNT (memory constraint files if needed)

%bdltran –c100 –s –lfl asic_45.FLIB –lfc foo-auto.FCNT –lb asic_45.BLIB –lml foo-auto.MLIB –lmc

foo-auto.MNCT –foo.IFF

>> Synthesizes the description and generats foo_C.IFF (result after scheduling) and foo_E.IFF (result

after binding).

%veriloggen foo_E.IFF

>> Generates foo_E.v

12

5. Writing your first ANSI-C Program for EDA

Often it is required to call third party tools from within an ANSI-C program. In this case use the

“system” call. E.g.

int main(){

 char buffer[];

 strcpy(buffer,” bdlpars foo.c”);

 system(buffer);

}

6. Linux Scripts

Writing scripts can help you being more productive. E.g. when having to run many simulations,

a small shell script can be setup to call your program with different input parameters:

Shell script example:

 %touch experiments.csh

 %vi experiments.csh

#!/bin/csh

experiment 1

../heuristic/dse.exe –parameter1 X –parameter2 Y

mv results.txt results_experiment1.txt

#experiment2

../heuristic/dse.exe –parameter1 N –parameter2 M

mv results.txt results_experiment2.txt

Execute by:

 %chmod +x experiments.csh

 %./experiments.csh

Perl scripts are also very useful to parse text files and extract information from them. An

example could be:

#! /usr/bin/perl

PolyU PROPRIETARY

File Name extract_runtime.pl

Function extracts the runtime of exploration runs from log file

13

Author Benjamin Carrion Schafer

Date July 18, 2013

Change history

Usage example: perl extract_runtime.pl -log <filename> -logout <name>

#use strict;

use warnings;

use diagnostics;

use POSIX;

use File::Basename;

sub main () {

print "\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~";

print "\n Welcome to PolyU Runtime Extractor CWB V1.0";

print "\n";

print "\n Written by Benjamin Carrion Schafer";

print "\n Copyright PolyU ";

print "\n Version 1.0, July 18, 2013";

print "\n";

print "\n -h for help";

print "\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n\n";

my $argc = @ARGV;

my $temp = "";

$logfile = "";

$logfile_out = "";

####### READ input arguments

for ($i=0 ;$i< $argc; $i++)

 {

 $temp = $ARGV[$i];

 if(!$temp){

 print "\n\t ERROR: Missing arguments needed. Check help menu \n";

 &help();

 }

 # Version print

 if($temp eq "-v") {

 exit -1; # version printed in header

 }

 # -h Print the help menu

 if($temp eq "-h"){

 &help();

 }

 # -log Specifies the Input log file

 if($temp eq "-log"){

 if ($i+1 <$argc){

 $logfile = $ARGV[$i+1];

 }

 else{

 print "\n\t ERROR: Missing $temp argument. Check help menu \n";

 &help();

 }

 }

 # -logout Specifies the output log file

 if($temp eq "-logout"){

 if ($i+1 <$argc){

14

 $logfile_out = $ARGV[$i+1];

 }

 else{

 print "\n\t ERROR: Missing $temp argument. Check help menu \n";

 &help();

 }

 }

 }

 # Check that all needed inputs where specified

 if($logfile eq ""){

 print "\n\t ERROR: Missing argument <log file> Arguments specified:\n";

 print "\n\nCheck help menu: \n";

 &help();

 }

 ###############

 ## Extract runtime of explored designs

 ##

 ## log file format:

 ## RUN 4 / 1

 ##DESIGN ./history/001a ave8 2013/07/18 15:27:20 ATTR 0020 OPTS 1 L:1 M:3 S:4 AREA 4482 LATENCY 2

CP_DELAY 1.62 CYCLES_SIM 0 OK

 ##DESIGN ./history/024a ave8 2013/07/18 15:29:05 ATTR -0023449 OPTS 1 L:1 M:3 S:1 AREA 6310 LATENCY

12 CP_DELAY 3.17 CYCLES_SIM 0 NOTPARETO

 ##DESIGN ./history/026a ave8 2013/07/18 15:29:20 ATTR -0022653 OPTS 1 L:1 M:3 S:1 AREA 6741 LATENCY

10 CP_DELAY 3.17 CYCLES_SIM 0 NOTPARETO

 ##DESIGN ./history/027a ave8 2013/07/18 15:29:28 ATTR -0023262 OPTS 1 L:1 M:3 S:2 AREA 6701 LATENCY

10 CP_DELAY 3.17 CYCLES_SIM 0 NOTPARETO

 &extract_designs();

}

&main();

 ###########################

 ## Extract the designs' synthesis runtime

 ##

sub extract_designs(){

 if($logfile_out eq ""){

 $report_file = "runtime_report_log.xls";

 }

 else{

 $report_file = "runtime_" . $logfile_out .".xls";

 }

 # Generate report file to store a summary of the system

 open(REPORT_FILE_XLS, ">$report_file") || die("ERROR: Could not generate report file $report_file");

 print REPORT_FILE_XLS "\n\nRuntime Analysis";

 ###########################

 ## Read log file

 ##

 ##

 open(REPORT, $logfile) || die("ERROR: Could not open CWB report file $logfile");

 @log_file = <REPORT>;

 close(REPORT);

15

 $flag_bdltranerror2 = 0, $flag_bdltranerror1=0;

 $start=0;

 $end =0;

 $design;

 $time_start;

 $time_finish;

 foreach $log_line (@log_file){

 chomp($log_line);

 if($log_line =~ /DESIGN/){

 @line = split(/\s+/, $log_line);

 @time_log = split(/:/, $line[4]);

 if($start == 0){

 $start = ($time_log[0]*3600)+ ($time_log[1]*60) + $time_log[2];

if($log_line =~ /BDLTRANERROR/){

$flag_bdltranerror1 = 1;

}

 if($line[13] eq 0){

 $flag_bdltranerror1 = 1;

 }

 $design = $line[1];

 $time_start = $line[4];

 }

 else{

 $end = ($time_log[0]*3600) +($time_log[1]*60) + $time_log[2];

 $runtime = $end - $start;

 $time_end = $line[4];

 if($line[13] eq 0){

 $flag_bdltranerror2 = 1;

 }

 else{

 $flag_bdltranerror2 = 0;

 }

 if($runtime > 0 and $flag_bdltranerror1 == 0){

 print REPORT_FILE_XLS "\n$design\t$line[2]\t$line[4]\t$time_start\t$time_end";

 print REPORT_FILE_XLS "\t$runtime";

 print "\n$design $line[2] $line[4] $end - $start = $runtime $time_start $time_end";

 }

 $start = $end;

 $design = $line[1];

 $flag_bdltranerror1=$flag_bdltranerror2;

 $flag_bdltranerror2 = 0;

 $time_start = $time_end;

 $time_end = 0;

 }

 }

 }

 print "\n\n";

 close(REPORT_FILE_XLS);

exit -1;

 }

16

#########################

Print help

sub help()

{

 print "\nHELP MENU ";

 print "\nlog <name>\t: Name of log file to be analuzed";

 print "\nlogout <name>\t: Name of output xls report file";

 printf "\n\nCommand format is:\n\tperl extract_runtime -log run_attr.log -logout ave8 \n\n";

 exit -1;

}

[END]

