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Abstract—This paper presents a clustering method called 

Clustering Design Space Exploration (CDS-ExpA) to accelerate 

the architectural exploration of behavioral descriptions in C and 

SystemC. The trade offs between faster exploration vs. optimality 

of results are investigated. Two variations of CDS-ExpA were 

developed: CDS-ExpA(min) and CDS-ExpA(max). 

CDS-ExpA(min) builds the smallest possible clusters while 

CDS-ExpA(max) builds the largest possible ones reducing further 

the design space. Results show that CDS-ExpA(min) and 

CDS-ExpA(max) explore the design space 90% and 92% faster on 

average than a previously developed annealer based exploration 

method at the expense of not finding 36% and 47% of the Pareto 

optimal designs and finding the smallest design that is 7% and 9% 

on average larger and the fastest design 28% and 32% slower 

respectively.  

 
Index Terms—Design space exploration, High level synthesis, 

acceleration, clustering 

I. INTRODUCTION 

Satisfying consumers’ increasing appetite for latest 

technologies implies for hardware design engineers shorter 

design cycles. The key to shorten design cycles is to have tools 

that convert system level descriptions, in any high level 

language, into efficient hardware designs in an easy and fast 

way, giving designers as much information as possible about the 

system at the earliest possible design stage to avoid time 

consuming re-designs. Raising the level of abstraction has a 

distinct advantage over traditional RTL design approaches. 

Multiple designs can be easily and quickly generated for the 

same source code, while RTL designs require major rework in 

the source code in order to modify the architecture. Moreover 

higher levels of abstraction combined with high level synthesis 

allow the architectural trade-off exploration of the behavioral 

description. The main problem with architecture exploration is 

its exponential order of complexity with the number of 

explorable operation, making it impossible to perform a full 

search space exploration. In this work we present a clustering 

method to accelerate the design space exploration (DSE) and 

compare it with a previously presented exploration method 
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based on simulated annealing [1] that leads to a good result 

finding Pareto optimal designs compared to a brute force 

approach for smaller benchmarks. Our new method is based on 

clustering operations, assigning a fix set of synthesis attributes 

(pragmas) to ‘explorable’ operations at the source code 

reducing the design space and therefore runtime.  

The main objective in design space exploration is to resolve 

minimizing conflicting objectives by finding the optimal points 

for different objective functions. In this work we restrict the 

exploration objectives to area and latency, but other objectives 

like power or throughput could also be added. These optimal 

points are called Pareto points. The objective is to find all the 

designs at the efficient frontier (also called Pareto frontier) 

shown in Figure 1 a, where each point on the frontier is a Pareto 

optimal point. The tradeoffs can easily be explored within this 

set rather than considering the entire design space, which would 

be impractical and irrelevant to the designer.  

The main problem in DSE is its exponential nature. A brute 

force approach would eventually find all the Pareto optimal 

points for smaller designs at a cost of extremely high running 

time. Heuristics have been developed to reduce runtime, at the 

expense of finding less number of Pareto points and some 

fictitious ones. Figure 1 b shows the eventual result of some 

heuristics. Region 1 shows fictitious Pareto points found by the 

heuristic. Further design space exploration would eventually 

end up finding the real Pareto point. Region 2 shows that some 

heuristics might miss Pareto optimal points and region 3 

illustrates that some of the Pareto points on the efficient frontier 

are actually found. A big problem with multi-objective 

functions is how to prove Pareto optimality. In this work we can 

only proof Pareto optimality for small benchmarks as these 

where benchmarked against a brute force method. For larger 

designs this is virtually impossible and we can only create 

solutions that are non-dominated. We will consider these 

solutions Pareto optimal as there is no way to proof their 

optimality.  
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Figure 1 (a) efficient frontier with Pareto optimal designs overview (b) design 

space exploration result  
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Previous work tightly integrate the exploration and the High 

Level Synthesis (HLS) steps in order to deterministically 

estimate the effect of each explorable transformation (e.g. loop 

unrolling vs. none) and therefore targeting directly during the 

exploration the transformation that lead to Pareto optimal 

designs. In this work we address the architecture exploration 

considering the HLS as a black box using a commercial HLS 

tool [2]. This HLS tool performs different transformations and 

applies different heuristics depending on the input description 

which are unknown before hand. The contributions of this work 

can be summarized as follows: 

• Introduce a clustering method called Clustering Design 

Space Exploration (CDS-ExpA) to accelerate the design 

space exploration for behavioral descriptions given in C or 

SystemC. CDS-ExpA clusters all explorable operations 

based on a given cluster library assigning fix synthesis 

attributes to each cluster. 

• We investigate the impact of the cluster size on the 

exploration speed and on the number of Pareto optimal 

points found, compared to a previously introduced method 

based on simulated annealing [1]. Two clustering methods 

are developed for this purpose. CDS-ExpA(min) and 

CDS-ExpA(max), where the first builds the smallest 

possible clusters and the latter the largest possible. 

• Present a comprehensive set of results comparing our 

clustering methods with a previously presented annealer 

based exploration method. 

II. MOTIVATIONAL EXAMPLE 

Figure 2 shows the source code of a small program that 

continuously reads in 8 bit numbers and calculates the average 

of the last 8 values read (this program corresponds to 

benchmark ave8 used in the experimental section). The 

explorable operations have been highlighted and consist of an 

array where the last 8 numbers are stored, 2 loops and 1 

function. The table next to the source code shows the result of 

the HLS for different synthesis attributes specified directly at 

the highlighted explorable operations using pragmas. As seen 

the difference between the smallest but slowest design and the 

fastest but largest is substantial, ranging from 1362 to 4352 

gates and latencies from 24 to 1 cycle. There are a multiple of 

Pareto optimal combinations in between these designs based on 

different attribute combinations as well as sub-attributes like the 

number of memory ports in the array (only 5 shown here). 

Manually editing the source code in order to explore the 

different area vs. performance trade-offs is a tedious and time 

consuming task. An automatic efficient design space 

exploration method is therefore highly desirable. The main 

problem in DSE is how to explore the design space in a 

reasonable time, finding as many Pareto optimal points as 

possible. 

III. RELATED WORK 

In order to deal with quicker time to market design cycles high 

level languages extended with hardware specific constructs are 

being used for designing hardware combined with high level 

synthesis. Some examples of C/C++ extensions include 

SystemC, BDL [2] or SA-C [3]. These high level language 

subsets simplify the design process as designers do not need to 

deal with low level Hardware Description Languages (HDLs). 

However designers still have to manually analyze the design to 

specify i.e. bit widths, parallelism, operator binding and 

resource sharing. The design space exploration does this step 

automatically generating a number of designs that meet a set of 

constraints (i.e area, latency and power). Much of the previous 

research has been focused on system level design exploration 

where the number and the type of functional units and bus size 

are explored [4]-[6]. We call this macro-architectural design 

space exploration vs. micro-architectural which is the method 

we present in this work. Previous work in the 

micro-architectural design space exploration on high level 

synthesis has been focused on applying source code 

transformation starting from CDFGs using multi-objective 

function optimizations. Ahmad et. al [7] studied the tradeoffs 

between the control step and area in data flow graphs using 

genetic algorithms. Holzer et. al [8] used a similar approach 

using an evolutionary multi-objective optimization approach to 

generate Pareto optimal solutions. Haubelt et al. [9] use 

Pareto-Front-Arithmetics (PFA) to reduce the search space in 

embedded systems decomposing a hierarchical search space. 

Early estimators of area and delay for FPGA implementations 

where used in [10] to evaluate the design space before any 

behavioral synthesis. Anderson et al [12] collect system 

information before the exploration starts doing a configuration 

sweep and use a genetic algorithm for the exploration of a 

parameterized RISC processor. A compiler approach to perform 

hardware design space exploration is presented in [11] where 

parallelization techniques are used to map computations to 

FPGAs. So et al. [13] developed a design space exploration 

technique using compiler direct techniques to perform several 

code transformations. The starting point in all of these 

approaches is the direct transformations at the CDFG level 

applying different compiler and optimizations techniques to 

generate new architectures combined with quick estimators. In 

this work we explore the design space using a commercial high 

level synthesis tool [2] seen as a black box by the explorer. We 

do not have access to it and execute it every time a new 

exploration design is generated. Previous work estimates the 

impact of each transformation as they have full control over the 

resultant synthesized circuit and can deterministically establish 

the cost of each transformation. The number of transformation 

  
Figure 2 Ave8 source code example highlighting the explorable operations 

and summary of HLS results using different set of attributes  
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allowed in these cases is very limited and are normally restricted 

to the number and/or type of functional units (FUs) and in some 

cases to loop unrolling. The commercial HLS tool used in this 

study has over 500 different optimization options using 

attributes (pragmas for individual operations) and global 

synthesis options and behaves differently in each case based on 

the different heuristics applied. It makes it therefore impossible 

for the exploration tool to accurately model and predict the 

behavior of the HLS tool, which leads to the need to adopt a 

different approach. 

IV. DESIGN EXPLORATION 

The design space exploration method presented in this work is 

based on a clustering algorithm called Clustering Design Space 

Exploration (CDS-ExpA) for a simulated annealer explorer 

introduced in [1] called Adaptive Simulated Annealer 

Exploration Algorithm (ASA-ExpA). The ASA-ExpA method 

generates a set of Pareto optimal designs for a given design 

written in untimed C or SystemC by inserting HLS directives 

directly into the source code. These directives are in the form of 

pragmas that the HLS tool processes and in turn synthesizes the 

instrumented source code accordingly. The method presented in 

this work explores loops, arrays and functions. Table 1 shows 

all the explorable operations and their pragmas. A more 

comprehensive explorer could also explore global synthesis 

options and the number of functional units. The goal of the 

exploration is to find as many as possible points on the efficient 

frontier or as close as possible. The tool developed around the 

exploration methods is called cwbexplorer. Figure 3 shows an 

overview of the exploration flow. SystemC or C is read by 

cwbexplorer. A new unique set of attributes is generated for the 

explorable operations found in the source code. A set of global 

synthesis options, the newly instrumented source code (.IFF) 

and a functional unit constraint file are passed to the HLS tool 

which then synthesizes the new designs. The result of the 

synthesis is read back by cwbexplorer to analyze the synthesis 

results (area and latency). If the design is dominated it is 

deleted. The exploration continues until no more Pareto optimal 

designs are found or a given exit criterion is met e.g. N number 

of non-optimal designs are created consecutively.  

Two version of the CDS-Exp have been developed. The first, 

called CDS-ExpA(min) clusters a group of operations into 

operation clusters (OC) as small as possible. This approach 

reduces the design space compared to the ASA-ExpA method 

developed previously, while at the same time still allows a large 

number of cluster combinations combined with non-clustered 

operations that leads to a smaller possibility of missing Pareto 

optimal designs. The second approach called CDS-ExpA(max) 

builds the largest possible clusters reducing further the design 

space compared to the CDS-ExpA(min) approach and hence 

accelerating the design space exploration even further at the 

expense of missing more Pareto optimal designs and generating 

more non-Pareto optimal designs. In this work we will compare 

both methods with the original simulated annealer method. 

The construction of the cluster is performed by firstly parsing 

the input C or SystemC code and building a dependency parsed 

tree of all the explorable operations (loops, functions and 

arrays). Figure 4 shows the parse tree of the motivational 

example (ave8). The parse tree is then traversed using a breadth 

first tree search method and a tree pattern matching algorithm 

applied to find clusters given in a previously manually created 

external cluster library. This ensures that clusters are built from 

top to bottom as transformation at higher levels of the tree have 

larger impact on the final synthesis results (e.g. when unrolling 

2 nested loops, unrolling the outer loop has a bigger impact on 

the final synthesis). The cluster library contains the sequences of 

operations that form a cluster and the set of pre-defined 

attributes associated to each cluster for different optimization 

targets e.g. reduce area or latency. The cluster types are all 

possible 2-3-4-tuples combination of arrays, functions and 

loops. 

 
Figure 3 Exploration flow overview 

  
      (a)            (b) 

 

Figure 4 Parse tree and clustering methods (a) Min cluster CDS-Exp(min) (b) 

Max cluster CDS-Exp(max) for ave8 

TABLE 1 ATTRIBUTES OF EXPLORABLE OPERATIONS  

Operation Attribute Description 

Loop Unroll=0 Do not unroll the loop 

 Unroll=x Partial loop unroll 

 Unroll=all Unroll the loop completely 

 Folding=N Fold loop N times 

Functions Func=inline Inline each function call 

 Func=goto Single function instantiation 

 Func=seq_opr Sequential operator 

 Func=pipeline_opr Pipeline operator 

 Func=operator Function treated as a functional unit  

Array Array=RAM Array synthesized as memory 

 Array=logic Constant array synth. as logic 

 Array=expand Expand array 

 Array=reg Synthesize array as registers 
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 objective should be minimized. The GCF changes dynamically 

during the exploration and the attributes assigned to each 

operation in the each cluster are re-assigned to minimize the 

GCF objective. E.g. if the GCF targets area reduction the 

loop1-array cluster in Figure 4 a will have the attributes 

Cluster1=[loop1=0,array=ram] assigned. When the GCF is 

updated to minimize latency, the attributes associated to this 

cluster will change to Cluster1=[loop1=all, array=reg]. It has to 

be noted that functions and arrays can be called/accessed from 

within different clusters. In order to be consistent, the attributes 

applied to these shared operation have to be the same 

throughout all the clusters. 

The fixed attributes assigned to each clusters have been 

empirically determined based on the study of the typical impact 

on each attribute on the synthesis on a set of different 

benchmarks. In order to avoid local minima a probabilistic 

component is inserted to the attribute assignment to each cluster, 

allowing clusters to be assigned attributes that do not minimize 

the GCF objective. The GCF has 3 states. Minimize area; 

minimize latency and an intermediate state. Each state has a 

unique set of attributes for each cluster stored in the external 

cluster library. These states target the exploration of Pareto 

points that minimize area, minimize latency and intermediate 

points in the curve. If after N designs no more Pareto designs are 

found the exploration moves to a new state updating the cost 

function and re-assigning the clusters’ attributes.  

Figure 5 summarizes the procedure of our clustering based 

exploration method:  

 

Step1: Construction of Clusters: For the given untimed C or 

SystemC source code a dependency parse tree with the 

explorable operations (loops, functions and arrays) is built. 

Operation clusters are built by traversing the parse tree 

matching operations groups with clusters given in the external 

cluster library. The cluster size depends on the selected 

clustering method. CDS-ExpA(min) builds smallest possible 

clusters, while CDS-ExpA(max) builds the largest possible ones. 

Each cluster will be assigned a fix set of attributes specified in 

this library depending on the GCF state. The cluster attributes 

are modified when the global cost function state change during 

the exploration, where e.g the target is to generate Pareto 

optimal designs that minimize area changes to created designs 

that maximize performance and probabilistically based on the 

simulated annealers temperature (ASA-ExpA). 

 

Step2: Creating Pareto optimal designs: Our method 

generates a unique new set of attributes for the operations given 

in the parse tree that do not belong to any cluster. The simulated 

annealer cost function is given by COST = αA + βL. The 

weighting factors α and β are adaptively updated during the 

exploration to represent the importance of minimizing the total 

area (A) or latency (L). This adaptive coefficient adjustment is 

made each time no more non-dominated designs could be 

generated for a given coefficient combination. Every time a new 

design is generated it is synthesized and checked for Pareto 

optimality. If it is not, it gets deleted. On the other hand each 

time a new Pareto optimal design is found, the rest of Pareto 

optimal designs are re-checked for optimality as this new design 

could render previous designs not Pareto optimal anymore. In 

this case these are deleted. Every time the GCF is updated the 

annealer is executed until the exit condition is reached. 

The most time consuming part in CDS-Exp is the inner 

while-loop which is bounded to O(p
n
), where p is the number of 

explorable attributes for each operation and n is the number of 

explorable operations. Although the order of complexity is 

exponential, clustering operations n will reduce the order of 

complexity to O(p
m
), where m=n-(C S), C is the number of 

clusters and S the cluster size, so that m is a much smaller value 

than n reducing therefore the design space considerably, at the 

expense of missing Pareto optimal designs. 

V. EXPERIMENTAL RESULTS 

First, we describe the experimental setup for the evaluation of 

out proposed method. Then, we show a set of comprehensive 

results obtained, together with the explanation and implication 

of the analysis of the data. 

A. Experimental Setup 

10 different benchmarks written in C and SystemC used in 

in-house designs were chosen to validate our method shown in 

Table 2. The first column shows the benchmark name. The 

second column indicates if it is a C or SystemC (SC) benchmark. 

The third column shows the size of the benchmarks denoted by 

the number of lines of code. It should be noted that 1 line of 

code of a high level language description is approximately 

equivalent to 10 lines of RTL code [15]. We compare our 

proposed method (CDS-ExpA(min) and CDS-ExpA(max)) to a 

previously presented simulated anealer based approach 

(ASA-ExpA) [1]. For each method the number of Pareto 

optimal designs found, the complete exploration runtime, the 

number of gates of the smallest design and the latency of the 

fastest design is given. As the anealer can take extremely long 

time to run, especially for the larger benchmarks it was decided 

CDS-ExpA: Clustering Design Space Exploration(S, LC, LE, I) 

/*  S : Source code (C or SystemC) 

 LC : Cluster library 

 LE: Explorable operations library 

 I: Input parameters (e.g. type of exploration) */ 

/* Step 1*/ 

• Parse source code S and build dependency parse tree of all explorable 

operations given in LE. 

• Build exploration clusters by traversing the parse tree and apply tree matching 

algorithm with clusters given in library LC. 

/* Step 2*/ 

• GCF = A =0, L=10  /* initialize global cost function to generate designs that 

minimize latency*/ 

while (GCF != L=0, A=10) /* explore until all GCF states passed */ 

 while(annealer temp > X) do /* explore until annealer exit criteria reached*/ 

• Assign attributes to operation in clusters from LC library attributes based on 

GCF state 

• Assign attributes to un-clustered operations from LE based also on the GCF 

state  /* if L=10 the probability to assign a latency reduction attributes is larger 

than an area reduction attribute */ 

• Randomize cluster assignment /* probabilistic re-assignment of cluster 

attributes to escape local minima */ 

• If sequence of attributes is unique synthesize design 

• Check if design is non-dominated. If not delete, if yes check if previous designs 

are still Pareto optimal 

endwhile; 

GCF= L-=delta, A+=delta /* update GCF to intermediate or minimize area state */ 

endwhile; 

return Pareto optimal designs (POD) 

 

Figure 5 Summary of the procedure of our exploration method (CDS-ExpA) 
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to exit the exploration if after 100 newly generated designs no 

new Pareto optimal design is found. We make the assumption 

that the Pareto design found by the ASA-ExpA approach are 

actual Pareto optimal and not fictitious. As we showed in [1], 

this holds true for the smaller benchmarks used in this study 

compared to a brute force approach. As the CDS-ExpA method 

might create fictitious Pareto optimal designs, the generated 

designs are compared against the ones generated by ASA-ExpA 

and only the designs that match the Pareto designs generated by 

ASA-ExpA are considered real Pareto optimal designs. The 

experiments were run on an Intel Xeon running at 3.20GHz 

machine with 3Gbytes of RAM running Linux Red Hat 

3.4.26.fc3. The running time given comprises the entire 

exploration process including the HLS.  

B. Results and Discussion 

Table 2 shows the results of the design space exploration. From 

the experiments it can be observed that our clustering method is 

on average 90% and 92% faster than the annealer method for the 

CDS-Exp(min) and CDS-Exp(max) method respectively. The 

drawback is that on average only 36% and 47% of all Pareto 

optimal designs are found. Table 2 also shows that our methods 

on average finds the smallest design that is 7% and 9% larger 

than the actual smallest case and 28% and 32% longer latency 

respectively. Although approximately one third and one half 

respectively of the Pareto optimal points are not found the 

smallest and fastest designs are found in some cases and in most 

cases almost found. This is important as in most cases these are 

the designs that are finally used and provide the boundary points 

of the exploration. In order to expand the search space using our 

method more clustering stages could be introduced changing the 

clusters attributes more often. This would find more optimal 

points at the expense of increasing the design space increasing 

therefore the runtime. 

VI. CONCLUSION 

High level synthesis is becoming a must in state of the art 

hardware designs. Designers can no longer describe and model 

entire SoCs in low level languages and need to raise the level of 

abstraction. Tools that bridge the gap between untimed high 

level languages and RTL are needed. In this paper we present a 

design space exploration method to speed up the exploration of 

high level language design descriptions given in C and SystemC. 

The presented method, called CDS-ExpA, is based on a 

clustering method that clusters explorable operations and 

assigns a fix set of attributes to these based on the global cost 

function in order to reduce the design space. Two variations of 

the CDS-Exp are presented. CDS-ExpA(min) creates the 

smallest possible clusters and CDS-ExpA(max) the largest 

possible ones. The trade-offs between further reducing the 

design space by building larger clusters vs. smaller is also 

investigated. Results show that the design space exploration 

dramatically reduces the runtime by around 90% at a cost of 

missing on average 36% and 47% of all Pareto optimal designs. 

On the other hand the smallest and fastest designs are found in 

many cases and on average 7% and 9% respectively larger than 

the actual smallest case and 28% and 32% longer latency 

designs are found. We believe that this exploration method is a 

valid solution for initial design space explorations as half of the 

Pareto points are found and closely the smallest and fastest ones 

which provides valuable design information to the designer at 

the earliest design stage extremely fast. 
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TABLE 2 EXPERIMENTAL RESULTS  

 ASA-ExpA (Annealer) CDS-ExpA(min) CDS-ExpA(max) 

Bench Type # line #  

Pareto 

Run [s] Min 

gates 

Min 

Latency 

#  

Clust. 

# Pareto Run 

 [s] 

Min 

gates 

Min 

Latency 

#  

clust 

# 

Pareto 

Run  

[s] 

Min 

gates 

Min 

Latency 

ave8  C 44 4 17872 1271 1 2 3 1507 1362 1 2 3 1362 1362 1 

Mult_Inst C 55 4 2793 1024 3 2 4 346 1263 6 2 2 199 1263 6 

Seql_comb C 60 5 643 1387 3 2 3 36 1503 3 2 2 19 1503 3 

add_func C 69 7 13223 1692 6 3 3 194 2041 5 2 2 908 2041 7 

combi_mult SC 93 9 16877 1002 3 3 4 254 1233 3 2 4 254 1233 5 

neststruct C 116 5 6400 2338 6 3 4 413 2338 7 2 2 205 2338 6 

adpcm SC 198 7 3531 5121 5 4 5 155 5121 6 2 3 151 5121 7 

gfilter C 270 6 38283 9681 12 5 3 10384 9868 10 3 2 8123 9866 14 

rsa_core SC 501 9 58941 54874 12 26 5 15784 55711 13 23 13 10974 58711 14 

SwitchFabric C 584 12 43962 39990 20 15 7 3134 40365 22 12 4 3134 46365 23 

Avg.  199 6.8 20253 11838 7 6 4.1 3221 12081 8 5 3.7 2533 12980 9 

∆ Avg. methods [%]       36% 90% 7% 28%  47% 92% 9% 32% 

 


