
IEEE Transactions on Computer Aided Design of Integrated Circuits and Systems (control number: 5519) 1

Abstract—This paper presents a clustering method called

Clustering Design Space Exploration (CDS-ExpA) to accelerate

the architectural exploration of behavioral descriptions in C and

SystemC. The trade offs between faster exploration vs. optimality

of results are investigated. Two variations of CDS-ExpA were

developed: CDS-ExpA(min) and CDS-ExpA(max).

CDS-ExpA(min) builds the smallest possible clusters while

CDS-ExpA(max) builds the largest possible ones reducing further

the design space. Results show that CDS-ExpA(min) and

CDS-ExpA(max) explore the design space 90% and 92% faster on

average than a previously developed annealer based exploration

method at the expense of not finding 36% and 47% of the Pareto

optimal designs and finding the smallest design that is 7% and 9%

on average larger and the fastest design 28% and 32% slower

respectively.

Index Terms—Design space exploration, High level synthesis,

acceleration, clustering

I. INTRODUCTION

Satisfying consumers’ increasing appetite for latest

technologies implies for hardware design engineers shorter

design cycles. The key to shorten design cycles is to have tools

that convert system level descriptions, in any high level

language, into efficient hardware designs in an easy and fast

way, giving designers as much information as possible about the

system at the earliest possible design stage to avoid time

consuming re-designs. Raising the level of abstraction has a

distinct advantage over traditional RTL design approaches.

Multiple designs can be easily and quickly generated for the

same source code, while RTL designs require major rework in

the source code in order to modify the architecture. Moreover

higher levels of abstraction combined with high level synthesis

allow the architectural trade-off exploration of the behavioral

description. The main problem with architecture exploration is

its exponential order of complexity with the number of

explorable operation, making it impossible to perform a full

search space exploration. In this work we present a clustering

method to accelerate the design space exploration (DSE) and

compare it with a previously presented exploration method

Manuscript received June 3, 2009, revised August 11, 2009

Benjamin Carrion Schafer is with NEC Corporation Central Research

Laboratories, EDA Center, Kawasaki, Kanagawa 211-8666 Japan (phone: +81

44 435 9486; fax: +81 44 435 9491; e-mail: schaferb@bq.jp.nec.com).

Kazutoshi Wakabyashi is with NEC Corporation Central Research

Laboratories, Design Methodology Center, Kawasaki, Kanagawa 211-8666

Japan (e-mail: wakaba@bl.jp.nec.com).

based on simulated annealing [1] that leads to a good result

finding Pareto optimal designs compared to a brute force

approach for smaller benchmarks. Our new method is based on

clustering operations, assigning a fix set of synthesis attributes

(pragmas) to ‘explorable’ operations at the source code

reducing the design space and therefore runtime.

The main objective in design space exploration is to resolve

minimizing conflicting objectives by finding the optimal points

for different objective functions. In this work we restrict the

exploration objectives to area and latency, but other objectives

like power or throughput could also be added. These optimal

points are called Pareto points. The objective is to find all the

designs at the efficient frontier (also called Pareto frontier)

shown in Figure 1 a, where each point on the frontier is a Pareto

optimal point. The tradeoffs can easily be explored within this

set rather than considering the entire design space, which would

be impractical and irrelevant to the designer.

The main problem in DSE is its exponential nature. A brute

force approach would eventually find all the Pareto optimal

points for smaller designs at a cost of extremely high running

time. Heuristics have been developed to reduce runtime, at the

expense of finding less number of Pareto points and some

fictitious ones. Figure 1 b shows the eventual result of some

heuristics. Region 1 shows fictitious Pareto points found by the

heuristic. Further design space exploration would eventually

end up finding the real Pareto point. Region 2 shows that some

heuristics might miss Pareto optimal points and region 3

illustrates that some of the Pareto points on the efficient frontier

are actually found. A big problem with multi-objective

functions is how to prove Pareto optimality. In this work we can

only proof Pareto optimality for small benchmarks as these

where benchmarked against a brute force method. For larger

designs this is virtually impossible and we can only create

solutions that are non-dominated. We will consider these

solutions Pareto optimal as there is no way to proof their

optimality.

Design Space Exploration Acceleration through

Operation Clustering

Benjamin Carrion Schafer Member, IEEE and Kazutoshi Wakabayashi Member, IEEE

(a) (b)

Figure 1 (a) efficient frontier with Pareto optimal designs overview (b) design

space exploration result

IEEE Transactions on Computer Aided Design of Integrated Circuits and Systems (control number: 5519) 2

Previous work tightly integrate the exploration and the High

Level Synthesis (HLS) steps in order to deterministically

estimate the effect of each explorable transformation (e.g. loop

unrolling vs. none) and therefore targeting directly during the

exploration the transformation that lead to Pareto optimal

designs. In this work we address the architecture exploration

considering the HLS as a black box using a commercial HLS

tool [2]. This HLS tool performs different transformations and

applies different heuristics depending on the input description

which are unknown before hand. The contributions of this work

can be summarized as follows:

• Introduce a clustering method called Clustering Design

Space Exploration (CDS-ExpA) to accelerate the design

space exploration for behavioral descriptions given in C or

SystemC. CDS-ExpA clusters all explorable operations

based on a given cluster library assigning fix synthesis

attributes to each cluster.

• We investigate the impact of the cluster size on the

exploration speed and on the number of Pareto optimal

points found, compared to a previously introduced method

based on simulated annealing [1]. Two clustering methods

are developed for this purpose. CDS-ExpA(min) and

CDS-ExpA(max), where the first builds the smallest

possible clusters and the latter the largest possible.

• Present a comprehensive set of results comparing our

clustering methods with a previously presented annealer

based exploration method.

II. MOTIVATIONAL EXAMPLE

Figure 2 shows the source code of a small program that

continuously reads in 8 bit numbers and calculates the average

of the last 8 values read (this program corresponds to

benchmark ave8 used in the experimental section). The

explorable operations have been highlighted and consist of an

array where the last 8 numbers are stored, 2 loops and 1

function. The table next to the source code shows the result of

the HLS for different synthesis attributes specified directly at

the highlighted explorable operations using pragmas. As seen

the difference between the smallest but slowest design and the

fastest but largest is substantial, ranging from 1362 to 4352

gates and latencies from 24 to 1 cycle. There are a multiple of

Pareto optimal combinations in between these designs based on

different attribute combinations as well as sub-attributes like the

number of memory ports in the array (only 5 shown here).

Manually editing the source code in order to explore the

different area vs. performance trade-offs is a tedious and time

consuming task. An automatic efficient design space

exploration method is therefore highly desirable. The main

problem in DSE is how to explore the design space in a

reasonable time, finding as many Pareto optimal points as

possible.

III. RELATED WORK

In order to deal with quicker time to market design cycles high

level languages extended with hardware specific constructs are

being used for designing hardware combined with high level

synthesis. Some examples of C/C++ extensions include

SystemC, BDL [2] or SA-C [3]. These high level language

subsets simplify the design process as designers do not need to

deal with low level Hardware Description Languages (HDLs).

However designers still have to manually analyze the design to

specify i.e. bit widths, parallelism, operator binding and

resource sharing. The design space exploration does this step

automatically generating a number of designs that meet a set of

constraints (i.e area, latency and power). Much of the previous

research has been focused on system level design exploration

where the number and the type of functional units and bus size

are explored [4]-[6]. We call this macro-architectural design

space exploration vs. micro-architectural which is the method

we present in this work. Previous work in the

micro-architectural design space exploration on high level

synthesis has been focused on applying source code

transformation starting from CDFGs using multi-objective

function optimizations. Ahmad et. al [7] studied the tradeoffs

between the control step and area in data flow graphs using

genetic algorithms. Holzer et. al [8] used a similar approach

using an evolutionary multi-objective optimization approach to

generate Pareto optimal solutions. Haubelt et al. [9] use

Pareto-Front-Arithmetics (PFA) to reduce the search space in

embedded systems decomposing a hierarchical search space.

Early estimators of area and delay for FPGA implementations

where used in [10] to evaluate the design space before any

behavioral synthesis. Anderson et al [12] collect system

information before the exploration starts doing a configuration

sweep and use a genetic algorithm for the exploration of a

parameterized RISC processor. A compiler approach to perform

hardware design space exploration is presented in [11] where

parallelization techniques are used to map computations to

FPGAs. So et al. [13] developed a design space exploration

technique using compiler direct techniques to perform several

code transformations. The starting point in all of these

approaches is the direct transformations at the CDFG level

applying different compiler and optimizations techniques to

generate new architectures combined with quick estimators. In

this work we explore the design space using a commercial high

level synthesis tool [2] seen as a black box by the explorer. We

do not have access to it and execute it every time a new

exploration design is generated. Previous work estimates the

impact of each transformation as they have full control over the

resultant synthesized circuit and can deterministically establish

the cost of each transformation. The number of transformation

Figure 2 Ave8 source code example highlighting the explorable operations

and summary of HLS results using different set of attributes

IEEE Transactions on Computer Aided Design of Integrated Circuits and Systems (control number: 5519) 3

allowed in these cases is very limited and are normally restricted

to the number and/or type of functional units (FUs) and in some

cases to loop unrolling. The commercial HLS tool used in this

study has over 500 different optimization options using

attributes (pragmas for individual operations) and global

synthesis options and behaves differently in each case based on

the different heuristics applied. It makes it therefore impossible

for the exploration tool to accurately model and predict the

behavior of the HLS tool, which leads to the need to adopt a

different approach.

IV. DESIGN EXPLORATION

The design space exploration method presented in this work is

based on a clustering algorithm called Clustering Design Space

Exploration (CDS-ExpA) for a simulated annealer explorer

introduced in [1] called Adaptive Simulated Annealer

Exploration Algorithm (ASA-ExpA). The ASA-ExpA method

generates a set of Pareto optimal designs for a given design

written in untimed C or SystemC by inserting HLS directives

directly into the source code. These directives are in the form of

pragmas that the HLS tool processes and in turn synthesizes the

instrumented source code accordingly. The method presented in

this work explores loops, arrays and functions. Table 1 shows

all the explorable operations and their pragmas. A more

comprehensive explorer could also explore global synthesis

options and the number of functional units. The goal of the

exploration is to find as many as possible points on the efficient

frontier or as close as possible. The tool developed around the

exploration methods is called cwbexplorer. Figure 3 shows an

overview of the exploration flow. SystemC or C is read by

cwbexplorer. A new unique set of attributes is generated for the

explorable operations found in the source code. A set of global

synthesis options, the newly instrumented source code (.IFF)

and a functional unit constraint file are passed to the HLS tool

which then synthesizes the new designs. The result of the

synthesis is read back by cwbexplorer to analyze the synthesis

results (area and latency). If the design is dominated it is

deleted. The exploration continues until no more Pareto optimal

designs are found or a given exit criterion is met e.g. N number

of non-optimal designs are created consecutively.

Two version of the CDS-Exp have been developed. The first,

called CDS-ExpA(min) clusters a group of operations into

operation clusters (OC) as small as possible. This approach

reduces the design space compared to the ASA-ExpA method

developed previously, while at the same time still allows a large

number of cluster combinations combined with non-clustered

operations that leads to a smaller possibility of missing Pareto

optimal designs. The second approach called CDS-ExpA(max)

builds the largest possible clusters reducing further the design

space compared to the CDS-ExpA(min) approach and hence

accelerating the design space exploration even further at the

expense of missing more Pareto optimal designs and generating

more non-Pareto optimal designs. In this work we will compare

both methods with the original simulated annealer method.

The construction of the cluster is performed by firstly parsing

the input C or SystemC code and building a dependency parsed

tree of all the explorable operations (loops, functions and

arrays). Figure 4 shows the parse tree of the motivational

example (ave8). The parse tree is then traversed using a breadth

first tree search method and a tree pattern matching algorithm

applied to find clusters given in a previously manually created

external cluster library. This ensures that clusters are built from

top to bottom as transformation at higher levels of the tree have

larger impact on the final synthesis results (e.g. when unrolling

2 nested loops, unrolling the outer loop has a bigger impact on

the final synthesis). The cluster library contains the sequences of

operations that form a cluster and the set of pre-defined

attributes associated to each cluster for different optimization

targets e.g. reduce area or latency. The cluster types are all

possible 2-3-4-tuples combination of arrays, functions and

loops.

Figure 3 Exploration flow overview

 (a) (b)

Figure 4 Parse tree and clustering methods (a) Min cluster CDS-Exp(min) (b)

Max cluster CDS-Exp(max) for ave8

TABLE 1 ATTRIBUTES OF EXPLORABLE OPERATIONS

Operation Attribute Description

Loop Unroll=0 Do not unroll the loop

 Unroll=x Partial loop unroll

 Unroll=all Unroll the loop completely

 Folding=N Fold loop N times

Functions Func=inline Inline each function call

 Func=goto Single function instantiation

 Func=seq_opr Sequential operator

 Func=pipeline_opr Pipeline operator

 Func=operator Function treated as a functional unit

Array Array=RAM Array synthesized as memory

 Array=logic Constant array synth. as logic

 Array=expand Expand array

 Array=reg Synthesize array as registers

IEEE Transactions on Computer Aided Design of Integrated Circuits and Systems (control number: 5519) 4

 objective should be minimized. The GCF changes dynamically

during the exploration and the attributes assigned to each

operation in the each cluster are re-assigned to minimize the

GCF objective. E.g. if the GCF targets area reduction the

loop1-array cluster in Figure 4 a will have the attributes

Cluster1=[loop1=0,array=ram] assigned. When the GCF is

updated to minimize latency, the attributes associated to this

cluster will change to Cluster1=[loop1=all, array=reg]. It has to

be noted that functions and arrays can be called/accessed from

within different clusters. In order to be consistent, the attributes

applied to these shared operation have to be the same

throughout all the clusters.

The fixed attributes assigned to each clusters have been

empirically determined based on the study of the typical impact

on each attribute on the synthesis on a set of different

benchmarks. In order to avoid local minima a probabilistic

component is inserted to the attribute assignment to each cluster,

allowing clusters to be assigned attributes that do not minimize

the GCF objective. The GCF has 3 states. Minimize area;

minimize latency and an intermediate state. Each state has a

unique set of attributes for each cluster stored in the external

cluster library. These states target the exploration of Pareto

points that minimize area, minimize latency and intermediate

points in the curve. If after N designs no more Pareto designs are

found the exploration moves to a new state updating the cost

function and re-assigning the clusters’ attributes.

Figure 5 summarizes the procedure of our clustering based

exploration method:

Step1: Construction of Clusters: For the given untimed C or

SystemC source code a dependency parse tree with the

explorable operations (loops, functions and arrays) is built.

Operation clusters are built by traversing the parse tree

matching operations groups with clusters given in the external

cluster library. The cluster size depends on the selected

clustering method. CDS-ExpA(min) builds smallest possible

clusters, while CDS-ExpA(max) builds the largest possible ones.

Each cluster will be assigned a fix set of attributes specified in

this library depending on the GCF state. The cluster attributes

are modified when the global cost function state change during

the exploration, where e.g the target is to generate Pareto

optimal designs that minimize area changes to created designs

that maximize performance and probabilistically based on the

simulated annealers temperature (ASA-ExpA).

Step2: Creating Pareto optimal designs: Our method

generates a unique new set of attributes for the operations given

in the parse tree that do not belong to any cluster. The simulated

annealer cost function is given by COST = αA + βL. The

weighting factors α and β are adaptively updated during the

exploration to represent the importance of minimizing the total

area (A) or latency (L). This adaptive coefficient adjustment is

made each time no more non-dominated designs could be

generated for a given coefficient combination. Every time a new

design is generated it is synthesized and checked for Pareto

optimality. If it is not, it gets deleted. On the other hand each

time a new Pareto optimal design is found, the rest of Pareto

optimal designs are re-checked for optimality as this new design

could render previous designs not Pareto optimal anymore. In

this case these are deleted. Every time the GCF is updated the

annealer is executed until the exit condition is reached.

The most time consuming part in CDS-Exp is the inner

while-loop which is bounded to O(p
n
), where p is the number of

explorable attributes for each operation and n is the number of

explorable operations. Although the order of complexity is

exponential, clustering operations n will reduce the order of

complexity to O(p
m
), where m=n-(C S), C is the number of

clusters and S the cluster size, so that m is a much smaller value

than n reducing therefore the design space considerably, at the

expense of missing Pareto optimal designs.

V. EXPERIMENTAL RESULTS

First, we describe the experimental setup for the evaluation of

out proposed method. Then, we show a set of comprehensive

results obtained, together with the explanation and implication

of the analysis of the data.

A. Experimental Setup

10 different benchmarks written in C and SystemC used in

in-house designs were chosen to validate our method shown in

Table 2. The first column shows the benchmark name. The

second column indicates if it is a C or SystemC (SC) benchmark.

The third column shows the size of the benchmarks denoted by

the number of lines of code. It should be noted that 1 line of

code of a high level language description is approximately

equivalent to 10 lines of RTL code [15]. We compare our

proposed method (CDS-ExpA(min) and CDS-ExpA(max)) to a

previously presented simulated anealer based approach

(ASA-ExpA) [1]. For each method the number of Pareto

optimal designs found, the complete exploration runtime, the

number of gates of the smallest design and the latency of the

fastest design is given. As the anealer can take extremely long

time to run, especially for the larger benchmarks it was decided

CDS-ExpA: Clustering Design Space Exploration(S, LC, LE, I)

/* S : Source code (C or SystemC)

 LC : Cluster library

 LE: Explorable operations library

 I: Input parameters (e.g. type of exploration) */

/* Step 1*/

• Parse source code S and build dependency parse tree of all explorable

operations given in LE.

• Build exploration clusters by traversing the parse tree and apply tree matching

algorithm with clusters given in library LC.

/* Step 2*/

• GCF = A =0, L=10 /* initialize global cost function to generate designs that

minimize latency*/

while (GCF != L=0, A=10) /* explore until all GCF states passed */

 while(annealer temp > X) do /* explore until annealer exit criteria reached*/

• Assign attributes to operation in clusters from LC library attributes based on

GCF state

• Assign attributes to un-clustered operations from LE based also on the GCF

state /* if L=10 the probability to assign a latency reduction attributes is larger

than an area reduction attribute */

• Randomize cluster assignment /* probabilistic re-assignment of cluster

attributes to escape local minima */

• If sequence of attributes is unique synthesize design

• Check if design is non-dominated. If not delete, if yes check if previous designs

are still Pareto optimal

endwhile;

GCF= L-=delta, A+=delta /* update GCF to intermediate or minimize area state */

endwhile;

return Pareto optimal designs (POD)

Figure 5 Summary of the procedure of our exploration method (CDS-ExpA)

IEEE Transactions on Computer Aided Design of Integrated Circuits and Systems (control number: 5519) 5

to exit the exploration if after 100 newly generated designs no

new Pareto optimal design is found. We make the assumption

that the Pareto design found by the ASA-ExpA approach are

actual Pareto optimal and not fictitious. As we showed in [1],

this holds true for the smaller benchmarks used in this study

compared to a brute force approach. As the CDS-ExpA method

might create fictitious Pareto optimal designs, the generated

designs are compared against the ones generated by ASA-ExpA

and only the designs that match the Pareto designs generated by

ASA-ExpA are considered real Pareto optimal designs. The

experiments were run on an Intel Xeon running at 3.20GHz

machine with 3Gbytes of RAM running Linux Red Hat

3.4.26.fc3. The running time given comprises the entire

exploration process including the HLS.

B. Results and Discussion

Table 2 shows the results of the design space exploration. From

the experiments it can be observed that our clustering method is

on average 90% and 92% faster than the annealer method for the

CDS-Exp(min) and CDS-Exp(max) method respectively. The

drawback is that on average only 36% and 47% of all Pareto

optimal designs are found. Table 2 also shows that our methods

on average finds the smallest design that is 7% and 9% larger

than the actual smallest case and 28% and 32% longer latency

respectively. Although approximately one third and one half

respectively of the Pareto optimal points are not found the

smallest and fastest designs are found in some cases and in most

cases almost found. This is important as in most cases these are

the designs that are finally used and provide the boundary points

of the exploration. In order to expand the search space using our

method more clustering stages could be introduced changing the

clusters attributes more often. This would find more optimal

points at the expense of increasing the design space increasing

therefore the runtime.

VI. CONCLUSION

High level synthesis is becoming a must in state of the art

hardware designs. Designers can no longer describe and model

entire SoCs in low level languages and need to raise the level of

abstraction. Tools that bridge the gap between untimed high

level languages and RTL are needed. In this paper we present a

design space exploration method to speed up the exploration of

high level language design descriptions given in C and SystemC.

The presented method, called CDS-ExpA, is based on a

clustering method that clusters explorable operations and

assigns a fix set of attributes to these based on the global cost

function in order to reduce the design space. Two variations of

the CDS-Exp are presented. CDS-ExpA(min) creates the

smallest possible clusters and CDS-ExpA(max) the largest

possible ones. The trade-offs between further reducing the

design space by building larger clusters vs. smaller is also

investigated. Results show that the design space exploration

dramatically reduces the runtime by around 90% at a cost of

missing on average 36% and 47% of all Pareto optimal designs.

On the other hand the smallest and fastest designs are found in

many cases and on average 7% and 9% respectively larger than

the actual smallest case and 28% and 32% longer latency

designs are found. We believe that this exploration method is a

valid solution for initial design space explorations as half of the

Pareto points are found and closely the smallest and fastest ones

which provides valuable design information to the designer at

the earliest design stage extremely fast.

REFERENCES

[1] B. Carrion Schafer, T. Takenaka and K. Wakabyashi, “Adaptive Simulated Annealer

for High Level Synthesis Design Space Exploration”, VLSI-DAT, 2009

[2] BDL: http://www.cyberworkbench.com

[3] SA-C, http://www.cs.colostate.edu/cameron

[4] C. Haubelt, T. Schlichter, J. Keinert and M. Meredith, “SystemCoDesigner:

Automatic Design Space Exploration and Rapid Prototyping from Behavioral

Models”, DAC, 2008.

[5] M. Kim, S. Banerjee, N. Dutt and N. Venkatasubramanian, “Design space exploration

of real-time multi-media MPSoCs with heterogeneous scheduling policies”,

CODES+ISSS, pp. 1621, 2006

[6] S. Mamagkakis, D. Atienza, C. Poucet and F. Catthoor, D. Soudris, and J. M.

Mendias, “Automated exploration of pareto-optimal configurations in parameterized

dynamic memory allocation for embedded systems”, DATE, pp. 874-875, 2006.

[7] I. Ahmad, M. Dhodi and F. Hielscher, “Design-Space Exploration for High-Level

Synthesis”, Computers and Communications, pp. 491-496, 1994.

[8] M.Holzer, B.Knerr and M. Rupp, “Design Space Exploration with Evolutionary

Multi-Objective Optimisation”, Proc. Industrial Embedded Systems, pp. 125-133,

2007.

[9] C. Haubelt and J. Teich, “Accelerating Design Space Exploration”, International

Conference on ASIC, pp. 79-84, 2003.

[10] V. Kianzad and S. S. Bhattacharyya, “CHARMED: A Multi-Objective Co-Synthesis

Framework for Multi-Mode Embedded Systems”, ASAP, pp. 28-40, 2004.

[11] S. Bilavarn, G. Gogniat, J.-L. Philippe and L. Bossuet, “Design Space Pruning

Through Early Estimation of Area/Delay Tradeoffs for FPGA Implementations”,

ICCAD, vol. 25, pp. 1950-1968, October 2006.

[12] I.D.L Anderson and M.A.S. Khalid, “SC Build: a computer-aided design tool for

design space exploration of embedded central processing unit cores for

field-programmable gates arrays”, IET Computers & Digital Techniques, pp 24-32,

Vol.3, Issue1, January 2009

[13] So B., Hall M. W, and P. C Diniz, “A Compiler Approach to Fast Hardware Design

Space Exploration in FPGA-based Systems”, PLDI, pp. 165-176, June 2002.

[14] B. So, P. C. Diniz and M. W.Hall, “Using Estimates from Behavioral Synthesis Tools

in Compiler-Directed Design Space Exploration”, DAC, pp. 514-519, 2003.

[15] P. Coussy and A. Moraweic, “High-Level Synthesis from Algorithm Digital Circuit”,

Springer, ISBN 978-1-4020-8587-1, 2008.

TABLE 2 EXPERIMENTAL RESULTS

 ASA-ExpA (Annealer) CDS-ExpA(min) CDS-ExpA(max)

Bench Type # line #

Pareto

Run [s] Min

gates

Min

Latency

Clust.

Pareto Run

 [s]

Min

gates

Min

Latency

clust

Pareto

Run

[s]

Min

gates

Min

Latency

ave8 C 44 4 17872 1271 1 2 3 1507 1362 1 2 3 1362 1362 1

Mult_Inst C 55 4 2793 1024 3 2 4 346 1263 6 2 2 199 1263 6

Seql_comb C 60 5 643 1387 3 2 3 36 1503 3 2 2 19 1503 3

add_func C 69 7 13223 1692 6 3 3 194 2041 5 2 2 908 2041 7

combi_mult SC 93 9 16877 1002 3 3 4 254 1233 3 2 4 254 1233 5

neststruct C 116 5 6400 2338 6 3 4 413 2338 7 2 2 205 2338 6

adpcm SC 198 7 3531 5121 5 4 5 155 5121 6 2 3 151 5121 7

gfilter C 270 6 38283 9681 12 5 3 10384 9868 10 3 2 8123 9866 14

rsa_core SC 501 9 58941 54874 12 26 5 15784 55711 13 23 13 10974 58711 14

SwitchFabric C 584 12 43962 39990 20 15 7 3134 40365 22 12 4 3134 46365 23

Avg. 199 6.8 20253 11838 7 6 4.1 3221 12081 8 5 3.7 2533 12980 9

∆ Avg. methods [%] 36% 90% 7% 28% 47% 92% 9% 32%

