
Published in IET Computers & Digital Techniques
Received on 1st August 2011
Revised on 9th January 2012
doi: 10.1049/iet-cdt.2011.0115

ISSN 1751-8601

Machine learning predictive modelling high-level
synthesis design space exploration
B. Carrion Schafer K. Wakabayashi
NEC Corporation, System IP Core Laboratory, 1753, Shimonumabe, Nakahara-Ku, Kanagawa, Kawasaki 211-8666, Japan
E-mail: schaferb@bq.jp.nec.com

Abstract: A machine learning-based predictive model design space exploration (DSE) method for high-level synthesis (HLS) is
presented. The method creates a predictive model for a training set until a given error threshold is reached and then continues with
the exploration using the predictive model avoiding time-consuming synthesis and simulations of new configurations. Results
show that the authors’ method is on average 1.92 times faster than a genetic-algorithm DSE method generating comparable
results, whereas it achieves better results when constraining the DSE runtime. When compared with a previously developed
simulated annealer (SA)-based method, the proposed method is on average 2.09 faster, although again achieving comparable
results.

1 Introduction

Very large-scale integrated design is gradually moving towards
higher levels of abstraction in order to take advantage of its
numerous benefits over traditional register transfer level
design approaches. One of these advantages is that higher
levels of abstraction combined with high-level synthesis
(HLS) allow the architectural trade-off exploration. The main
problem with architecture exploration is its exponential order
of complexity with the number of explorable constructs in
the behavioural description, for example, arrays can be
mapped to memory (dual, single port etc.), registers,
expanded, making it impossible to perform a full design
space exploration (DSE). The presence of multiple objectives
in DSE gives rise to a set of optimal solutions, also known
as Pareto-optimal solutions, instead of a single optimal
solution. In the absence of any further information, none of
these Pareto-optimal solutions can be considered to be better
than the other. This demands an automatic method to find as
many Pareto-optimal solutions as efficiently as possible.

The main challenge lies in how to proof Pareto optimality of
the final solution space. As it is extremely hard to proof Pareto
optimality, the literature normally refers to the solution space
as dominating or non-dominated solutions. In this work we
will consider non-dominated designs as Pareto optimal as
there is no practical way to prove their optimality.

Fig. 1 shows the source code of a six-tap finite-impulse
response (FIR) filter in order to illustrate and motivate this
work. The explorable operations have been highlighted and
consist of two arrays where the coefficients and data are
stored in two loops that perform the filtering function on
this data. These operations are considered explorable
because they can be synthesised in different ways resulting
in very different area against performance implementations,
for example, the loop can be unrolled partially or

completely and the arrays can be mapped to registers or
memory. The table next to the source code shows the result
of the HLS for different synthesis attributes (pragmas). The
trade-off curve below the table is a screenshot of the
exploration results. As seen, the difference between the
smallest but slowest design and the fastest but largest
design is substantial, with the area ranging from 8316 to
2810 and the latencies from 13 to 1 cycles. There are a
multiple Pareto-optimal combinations in between these
designs based on different attribute combinations as well as
subattributes like the number of memory ports in the array,
but only four combinations are shown here for practical
reasons. Manually editing the source code in order to
explore the different area against performance trade-offs is
tedious and time consuming. An automatic, quick and
efficient DSE method that finds as many Pareto-optimal
designs as possible is therefore highly desirable.

The contributions of this work can be summarised as
follows:

† Investigate different machine learning (ML) predictive
models for HLS DSE in order to select the most efficient one.
† Introduce a DSE method based on a genetic algorithm ML
predictive model, called GA-ML, and investigate the quality
of results and runtime against a pure genetic algorithm
(GA) method and a previously developed simulated
annealer (SA) method. A comprehensive set of results is
presented in order to evaluate the newly proposed method.

The paper is organised as follows. Section 2 presents a
comprehensive literature review. Section 3 introduces our
newly proposed ML-based method to accelerate the DSE.
Section 4 provides a set of experimental results to show the
efficiency of our method. Finally, Section 5 gives
concluding remarks.

IET Comput. Digit. Tech., pp. 1–7 1
doi: 10.1049/iet-cdt.2011.0115 & The Institution of Engineering and Technology 2012

www.ietdl.org



2 Related work

Previous work in micro-architectural DSE in HLS has been
focused on applying source code transformation starting from
control data flow graphs (CDFGs) using multi-objective
function optimisations. Ahmad et al. [1] studied the trade-offs
between the control step and area in data flow graphs using
GAs. Holzer et al. [2] used a similar approach using an
evolutionary multi-objective optimisation approach to
generate Pareto optimal solutions. Haubelt et al. [3] use
Pareto–Front–Arithmetic’s to reduce the search space in
embedded systems decomposing a hierarchical search space.
Early estimators of area and delay for field programmable gate
array (FPGA) implementations were used in [4] to evaluate
the design space before any behavioural synthesis. Anderson
et al. [5] collect system information before the exploration
starts doing a configuration sweep and use a GA for the
exploration of a parameterised reduced instruction set
computer (RISC) processor. A compiler approach to perform
hardware DSE is presented in [6] where parallelisation
techniques are used to map computations to FPGAs. So et al.
[7] developed a DSE technique using compiler-directed
techniques to perform several code transformations. The
starting point in all these approaches is the direct
transformations at the CDFG level applying different compiler
and optimisations techniques to generate new architectures
combined with quick estimators. Givargis et al. [8] proposed a
system-level exploration technique for systems on a chip
(SoCs) by subdividing the design space based on system
parameters dependencies, exploring these individually and
then incrementally adding the results of each partial
exploration together to obtain the Pareto-optimal designs. In
previous works we developed exploration techniques based on
SA [9] and pattern matching [10]. The most similar work we
have found is by Ascia et al. [11] where a multi-objective
evolutionary method combined with Fuzzy systems for the
estimation of performance indexes are used for parametrisable

very large instruction word (VLIW) processors. In this work,
we not only propose the use of ML to create a predictive
model, but also analyse multiple ML methods to investigate
which method is better suited for HLS DSE for a commercial
HLS tool seen as a black box by our explorer.

3 ML predictive exploration method

The DSE method proposed in this work generates a set of
Pareto-optimal designs for a given behavioural description
in untimed C or SystemC (SC) by inserting HLS directives
directly into the source code. These directives are in the
form of pragmas that the HLS tool processes and in turn
synthesises the instrumented source code accordingly. The
method presented in this work explores loops, arrays and
functions. Table 1 shows all the explorable operations and
their synthesis directives. A more comprehensive explorer
could also explore global synthesis options and the number
and type of functional units. The goal of the exploration is

Table 1 Explorable operations

Operation Attribute Description

Loops unroll ¼ 0 do not unroll loop

unroll ¼ x partial loop unroll

unroll ¼ all unroll loop completely

folding ¼ N fold loop N times

Functions func ¼ inline inline each function call

func ¼ goto single function instantiation

func ¼ seq_opr function inst as sequential opr

fuic ¼ pipeline function inst as pipeline opr

Arrays array ¼ RAM array synthesised as memory

array ¼ logic constant arrays synthesised as logic

array ¼ expand expand array

array ¼ reg synthesise array as registers

Fig. 1 Motivational example: FIR filter DSE

2 IET Comput. Digit. Tech., pp. 1–7

& The Institution of Engineering and Technology 2012 doi: 10.1049/iet-cdt.2011.0115

www.ietdl.org



to find as many Pareto-optimal designs as possible. These
designs form the Pareto front, also called efficient frontier.

Fig. 2 shows a flow diagram of our proposed method,
which consists of five steps:

Step 1: The explorer parses the C/SC code and extracts all the
constructs that can be explored, for example loops, functions
and arrays.
Step 2: It continues by generating a random set of synthesis
directives (pragmas) for all the explorable constructs.
Step 3: It calls the HLS tool in order to synthesise the new
design with the new attributes.
Step 4: It then continues by calling the cycle accurate model
generator in order to generate and execute a cycle accurate
model for each newly synthesised circuit in order to extract
the design’s exact latency.
Step 5: After X consecutive newly generated designs
(empirically we found that X ¼ 20 led to good results) our
method creates a predictive model and estimates the error
between the model and all the previously generated designs.
If the error is smaller than a given threshold value, the
method continues the exploration using the predictive
model instead of generating random configurations with a
(GA. If the model error still exceeds the given threshold
value, the method continues generating unique random
designs and synthesising these until the threshold value is
reached. At the end of the exploration, the non-dominated
designs obtained are all synthesised and simulated in order
to obtain the accurate area and latency results.

Fig. 3 summarises the procedure of the GA used in GA-
ML. The procedure starts by creating the initial design
population P with N number of new designs P ¼ {D1, D2,
. . . , DN} (chromosomes), each with a unique set of
synthesis attributes Dl ¼ {A1, A2, . . . , Am} applied to each
explorable construct Ei. It then continues by evaluating the
area and latency of each new design Dl ¼ {A1, A2, . . . ,
Ap|Area, Latency}. The only difference between GA-ML
and GA is that GA-ML uses the predictive model to

evaluate the area and latency, whereas GA needs to
resynthesise each new design and run a cycle accurate
simulation to extract this information, which are the most
time-consuming parts of the DSE. The procedure then
randomly selects two designs and crosses them over by
randomly selecting a cut-off point between the attribute lists
of the designs. The new design combines the left-half of the
attributes list of D1 and the right-half D2. The GA
continues by mutating the new offspring. This is done by
randomly selecting a synthesis attribute Ag from the list
(chromosome) and changing it to another attribute
randomly. The mutation and cross-over rates have to be
specified by the user beforehand. Finally, the mutated
offspring is evaluated in terms of area and latency and
replace one of the parents if it dominates it in all the
objectives (area and latency). If the offspring only
dominates one of the objectives, it is randomly decided if it
substitutes one of the parents or not.

As it can be observed, the predictive model used is key to
the success of our method. We investigated different ML
methods using Weka [12], a freely available ML tool suite,
which includes numerous ML methods. In our case, we
focused on the numeric prediction method as the DSE
needs a ML method that can predict the area and latency of
a design as a function of the synthesis attributes applied to
the design as follows: Area ¼ f (A1, A2, . . . , An) and
Latency ¼ f (A1, A2, . . . , An), where Ax represents a
synthesis directive for a given explorable construct.

Our method starts by randomly generating N designs D1 . . .
Dn, where each design Dm ¼ {A1, A2, . . . , An} has assigned a
unique set of synthesis attributes A, and inserting these
directives automatically into the source code. Attributes’
combinations for a particular design are referred to as

Fig. 3 Summary of GA

Fig. 2 DSE flow

IET Comput. Digit. Tech., pp. 1–7 3
doi: 10.1049/iet-cdt.2011.0115 & The Institution of Engineering and Technology 2012

www.ietdl.org



instances I (inputs) in ML terminology [13]. Each instance is
an individual and independent input to be learned. Therefore
each new design (Dx) with a unique set of attributes {A1, A2,
. . . , An} is an instant Ix.

Different ML methods were evaluated in order to use the
most accurate one for HLS DSE. Table 2 summarises the
models evaluated. They cover most of the ML method
families: rule based, tree based and function based.

In order to compare the efficiency of the different methods
we extended our flow to write out at specified constant
intervals all the instances generated I1, I2, . . . , In until that
particular time (all designs with their area, latency and
synthesis directives). A predictive model was generated for
each interval for all the instances using all the ML methods
indicated in Table 2 (M5P, REPTree, DecisionStump and
Linear regression) and their relative error between the
model and the actual area and latency computed. Fig. 4
shows the predictive model errors analysis for the CSC test
case. From this analysis it could be concluded that the M5P
method was consistently the best of all the methods. An
interesting observation made during this analysis is that the
error is not a monotonically decreasing function. This has
some implications on our exploration method as the method
cannot proceed with the predictive model exploration stage
(step 5) once the error threshold value is reached. It has to
guarantee that the predictive model is accurate enough for
any combination of results. To tackle this problem it was
experimentally observed that the predictive model had to
meet the error threshold value (maximum error allowed)
three consecutive times for predictive model generation
interval of 20 instances, in order to guarantee that the error
function is monotonically decreasing. The model’s error,
difference between the predicted area and latency (Aip, Lip)
and the actual area and latency (Ap, Li) obtained after HLS
of design Di, is computed using a standard 10-fold stratified
cross validation method. This implies that the data
evaluated until this point are divided randomly into ten
parts, where each part is held out in turn and the learning
scheme is trained on the remaining nine-tenths as suggested
in [13]. For each cross-validation experiment the new
independent error estimate is calculated. The mean of all

the independent errors is then used to compare the quality
of each method.

Based on the error analysis, the M5P method was chosen,
as this was the most accurate of all. The M5P method is a
model tree learner, essentially consistent of a decision tree
with linear models at the leaves.

The most time-consuming part of the flow is the generation
of the training set to generate the predictive model. Weka
generates an M5P predictive model in milliseconds, whereas
the synthesis, model generation and simulation of each new
design can take between 10 s, for the smaller test cases, to
minutes for the larger ones. This training set generation
phase creates random designs with random set of synthesis
attributes until the specified error margin is reached. A new
predictive model is created at regular intervals and its error is
verified. Once the predictive model created leads to errors
within the specified error margins, the exploration continues
using this predictive model instead of synthesising random
design configurations. This part of the exploration is based
on a GA as GA has shown in previous work [2, 14] that it
can lead to good results. We call this exploration method
GA-ML. Its exploration parameters follow the indications
given in [14]. The number of populations created is 40,
crossover probability of 0.8 and mutation probability of 0.1.

4 Experimental results

First, we describe the experimental set-up for the DSE results
of our proposed ML method (GA-ML) as compared with a
conventional GA method and a previously developed
annealer-based method (SA). The SA method has shown to
generate good results as compared with a brute force
approach and will serve as a good overall quality reference
point [9]. Then, we show a set of comprehensive results
obtained, together with explanations on the implication and
analysis of the data.

4.1 Experimental set-up

Eight different test cases written in C and SystemC (SC) used
in in-house designs were chosen to validate our method shown
in Table 3. The first benchmark (ave8) computes the average of
eight numbers. Gfilter is a graphic filter, CSC, FD_shrink,
FD_ISS and FCU are part of a face detection IP, where CSC
is the colour space converter, FD_image_shrink the window
resizing, FD_ISS the sub-window selection and FCU the
feature detection unit. Reed Solomon represents only the
encoder part and FPU_mult a floating point multiplication
described in C. The first column shows the benchmark’s
name. The second column indicates if it is a C or SC design.
The third column shows the size of the benchmarks denoted
by the total number of lines of code. The last column depicts
the total number of explorable constructs, where the number

Table 2 Predictive models comparisons

Predictive model Description

decision stump simple decision table. One-level decision

tree (tree based)

linear regression standard linear regression (function

based)

M5P regression tree learner (tree based)

REPTree decision tree (rule based)

Fig. 4 Predictive models’ errors comparison

4 IET Comput. Digit. Tech., pp. 1–7

& The Institution of Engineering and Technology 2012 doi: 10.1049/iet-cdt.2011.0115

www.ietdl.org



in brackets of the loops represent the number of iterations (d
means data dependent), and the number at the arrays and
functions indicate the total number of arrays and functions in
each test case.

The main problem when comparing different multi-
objective function optimisation methods is how to measure
the quality of the results: closeness to the Pareto front,
wider range of diverse solutions or other properties. Several
studies that address the problem of comparing
approximations of the trade-off surface in a quantitative
manner can be found in the literature. Most popular are
unary quality measures, that is, the measure assigns each
approximation set a number that reflects a certain quality
aspect, and usually a combination of them is used [15, 16].
A multitude of unary indicators exist, for example,
hypervolume indicator, average best weight combination,
distance from reference set and spacing. Zitzler et al. [17]
provide a good review of all existing methods, indicating
that there is no any single indicator able to measure the
quality of the results. Nevertheless, quality measures are
necessary in order to compare the outcome of the DSE. In
this work, we follow the guidelines suggested by [17] and
measure the quality of the different methods using the
following criteria described by [11]

1. Distance: This measure (D) indicates how close a Pareto-
front is to the reference front. The lower the distance value (D)
is, the more similar two Pareto sets are, for example, a high
value of maximum distance (Dmax) suggests that some
reference points are not well approximated, and
consequently a high value of average distance (Davg) tells
us that an entire region of the reference Pareto-front is
missing in the approximation set.
2. Hypervolume: This index measures the hypervolume of
the part of the exploration space that is weakly dominated

by the Pareto set to be evaluated. In order to measure this
index the exploration space must be bound. In our case, we
define the bounding point, as the point which has
coordinates in the objective space equal to the highest value
obtained.
3. Pareto dominance: This index is equal to the ratio between
the total number of points in the Pareto set being evaluated,
also present in the reference Pareto set. The higher the
value, the better the Pareto set is.
4. Cardinality: We also report the number of dominating
designs found by each method (Cardinality). A high
cardinality indicates a larger number of solutions to choose
from, which should be considered to be positive, although it
needs to be interpreted carefully with the rest of the data.

Two types of analysis are performed, qualitative and
quantitative. First, a qualitative analysis between the three
approaches (GA-ML, GA and SA) is performed. For GA-
ML and GA exactly the same exploration parameters are
used (number of populations, designs per population,
mutation and crossover rate). This means that the results
ideally, if the same seed is used, should be identical for
both methods, whereas GA-ML should finish faster than
GA. For the quantitative analysis, the exploration runtime is
restricted to a given time (half of the exploration runtime of
the GA method of the qualitative analysis) and the results
are compared. In this case GA-ML should create better
results as it has more time to evaluate more combinations.

The experiments were repeated five times in order to
minimise the stochastic behaviour of the methods used. We
report the average result of all runs. The best results of all
three methods are combined to obtain the reference Pareto-
front used to compare the different methods. The
experiments were run on an Intel Xeon running at
3.20 GHz machine with 3 Gbytes of RAM running Linux

Table 4 DSE experimental results I: runtime comparison

Benchmark GA-ML GA SA

Training, s Exploration, s Total run, s Total run, s Diff Total run, s Diff

ave8 407 37 444 2792 6.29 3211 7.23

Gfilter 6035 364 6399 11 266 1.76 12 421 1.94

Csc 7676 229 7904 19 920 2.52 17 654 2.23

fd_shrink 21 173 2838 24011 31 193 1.30 33 584 1.40

fd_iss 2693 106 2799 4323 1.54 5964 2.13

Fcu 81 924 15 234 97 157 127 500 1.31 134 225 1.38

reed solomon 6572 1145 7716 11 512 1.49 13 454 1.74

fpu_mult 12 396 987 13 382 22 821 1.71 21 874 1.63

Geomean 7898 15 187 1.92 16 529 2.09

Table 3 Benchmarks overview

Benchmark Type #lines Explorable operations

ave8 C 58 loop(8), loop(8), array(1)

Gfilter SC 420 loop(6), loop(7), loop(6), loop(6), array(4), func(4)

Csc C 644 loop(256), loop(3), loop(d), array(2), func

fd_shrink C 783 loop(255), loop(256), loop(8), loop(8), loop(d), loop(d), array(2), func(1)

fd_iss C 357 loop(4), loop(8), loop(20), array(3), func(1)

Fcu C 2949 loop(20), loop(20), loop(20), loop(20), loop(20), loop(20), loop(20), loop(20), loop(20), loop(20)

loop(8), loop(d), loop(d), loop(d), array(8), func(2)

reed Solomon SC 530 loop(16), loop(16), loop(7), loop(7), array(8), loop(d), loop(d), loop(d), loop(d), func(4)

fpu_mult C 720 loop(23), loop(23), loop(23), loop(23), loop(23), loop(23), loop(23), loop(23), array(8), func(4)

IET Comput. Digit. Tech., pp. 1–7 5
doi: 10.1049/iet-cdt.2011.0115 & The Institution of Engineering and Technology 2012

www.ietdl.org



Red Hat 3.4.26.fc3 and we used CyberWorkBench [18] for
HLS. The running time given comprises the entire
exploration process.

4.2 Experimental results

Table 4 shows the runtime comparison between our proposed
method and a conventional GA method and the SA method.
The average values represent the geometric mean
(geomean), as the absolute indicators vary significantly
between benchmarks because of their size differences.

It can be observed that our method is faster in all test cases
with an average speed-up of ×1.92 compared to the GA
method whereas ×2.04 compared to the SA method. It
should be noted that the error threshold value chosen
dramatically affects the runtime of our method. In this case,
we chose a DE% of 15%, which experimentally showed a
good balance between runtime and quality of results. A
larger error margin (maximum permissible average error
difference between the predicted area and latency against
the area and latency after synthesis and simulation for all
designs explored so far) significantly increases the speed-up
as the training set generation, which is the most time-
consuming part, is executed faster, whereas reducing the
error threshold value would decrease the speed-up
proportionally to the training set size.

Table 5 compares the quality of the two methods. It reports
the cardinality, Pareto dominance and hypervolume. Our
method finds on average 22% less number of Pareto
optimal designs compared to both the GA and SA methods
and the Pareto dominance factor is on average 35% lower
than the dominating Pareto front obtained by the GA and
SA methods. The hypervolume, normalised with respect to

the boundaries of the objective space and given in
percentage, indicates that our method performs very well
with an average of 10% smaller than the GA result and
11% smaller than the SA method. The difference between
the results of GA-ML and the other two methods is
basically because of the error in the model. Lowering the
error threshold value could improve the results, but we
observed that in order to reduce the error by 5% we had to
increase the training set by almost 25%, reducing the speed-
up considerably. In some cases, GA-ML was able to find
some dominating designs not found by GA. These designs
were mainly created during the training set generation phase.

The second sets of experiments compare the quality of the
exploration results if the DSE’s runtime is limited to half of
the GA runtime shown in Table 4. Table 6 shows that both
approaches lead to similar results in terms of cardinality,
whereas our method as expected leads to better Pareto
dominance and hypervolume values. This is basically
because GA-ML can evaluate many more configurations
compared to the GA and SA methods.

5 Conclusion

This work presents an ML predictive model HLS designs
space exploration method called GA-ML. Our method
creates a predictive model based on a dynamic training set
that is interrupted when a specified maximum model error
is reached and then continues the DSE using a pseudo GA
based on the predictive mode, instead of having to re-
synthesise each new design being explored. Results show
that our method obtains comparable results to a pure GA
exploration method with the same exploration parameters
while running on average 1.92 times faster. Compared to a

Table 5 DSE experimental results II: quality assessment

Benchmark Cardinality Pareto dominance Hypervolume, %

GA-ML GA SA GA-ML GA SA GA-ML GA SA

ave8 4 6 6 0.67 1.00 1 0.97 1.00 1

Gfilter 4 5 5 0.80 0.83 0.83 0.97 0.99 0.99

Csc 5 7 7 0.71 1.00 1 0.94 1.00 1

fd_shrink 4 5 5 0.40 1.00 1 0.93 1.00 1

fd_iss 3 4 4 0.50 1.00 1 0.98 1.00 1

Fcu 7 10 12 0.40 0.93 0.93 0.73 0.95 0.97

reed solomon 5 6 6 0.50 1.00 1 0.63 1.00 1

fpu_mult 5 6 5 0.83 1.00 1 0.98 1.00 1

Geomean 4.63 65.92 5.92 0.62 0.97 0.97 0.89 0.99 0.99

Table 6 DSE experimental results II: quality assessment under runtime constraint

Benchmark Cardinality Pareto dominance Hypervolume, %

GA-ML GA SA GA-ML GA SA GA-ML GA SA

ave8 5 5 5 0.75 0.75 0.75 0.60 0.61 0.61

Gfilter 4 3 3 1.00 0.50 0.5 1.00 0.78 0.78

Csc 5 5 5 1.00 0.60 0.6 1.00 0.97 0.97

fd_shrink 4 3 3 0.60 0.40 0.4 0.97 0.99 0.99

fd_iss 3 3 3 1.00 0.75 0.75 1.00 0.93 0.93

Fcu 5 7 8 0.71 0.57 0.70 0.96 0.94 0.97

reed solomon 4 5 5 0.40 0.80 0.80 0.73 0.93 0.93

fpu_mult 4 5 5 0.80 0.80 0.80 0.95 0.93 0.93

Geomean 4.20 4.31 4.38 0.75 0.63 0.89 0.88 0.88

6 IET Comput. Digit. Tech., pp. 1–7

& The Institution of Engineering and Technology 2012 doi: 10.1049/iet-cdt.2011.0115

www.ietdl.org



previously developed simulated annealer-based method, our
proposed method also showed comparable results, while
executing 2.09 times faster. When the exploration time is
restricted to half the exploration time required for a full
exploration, our method generates better results than the
GA and SA methods as it is able to evaluate more
configurations in the given time.

6 References

1 Ahmad, I., Dhodi, M., Hielscher, F.: ‘Design-space exploration for high-
level synthesis’, Comput. Commun., 1994, pp. 491–496

2 Holzer, M., Knerr, B., Rupp, M.: ‘Design space exploration with
evolutionary multi-objective optimisation’, Proc. Ind. Embedded Syst.,
2007, pp. 125–133

3 Haubelt, C., Teich, J.: ‘Accelerating design space exploration’.
International Conference on ASIC, 2003, pp. 79–84

4 Haubelt, C., Teich, J.: ‘CHARMED: a multi-objective co–synthesis
framework for multi–mode embedded systems’. ASAP, 2004, pp. 28–40

5 Anderson, I.D.L., SKhalid, M.A.: ‘SC build: a computer–aided design
tool for design space exploration of embedded central processing unit
cores for field-programmable gates arrays’, IET Comput. Digit. Tech.,
2009, pp. 24–32

6 So, B., Hall, M.W., Diniz, P.C.: ‘A Compiler approach to fast hardware
design space exploration in FPGA-based systems’, IET Comput. Digit.
Tech., 2002, pp. 165–176

7 So, B., Diniz, P.C., Hall, M.W.: ‘Using estimates from behavioral
synthesis tools in compiler–directed design space exploration’, DAC,
2003, pp. 512–519

8 Givargis, T., Vahid, F., Henkel, J.: ‘System-level exploration for
pareto-optimal configurations in parameterized systems-on-a-chip’,
IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 2002, 10, (4),
pp. 416–422

9 Carrion Schafer, B., Takenaka, T., Wakabayashi, K.: ‘Adaptive
simulated annealer for high level synthesis design space exploration’.
VLSI DAT, 2009, pp. 509–519

10 Carrion Schafer, B., Wakabayashi, K.: ‘Design space exploration
acceleration through operation clustering’, IEEE Trans. Comput.-
Aided Des. Integr. Circuits Syst. (TCAD), 2010, 29, (1), pp. 153–157

11 Ascia, G., Catania, V., Di Nuovo, A.G., Palesi, M., Patti, D.: ‘Efficient
design space exploration for application specific systems-on-a-chip’,
J. Syst. Archit., 2007, 53, pp. 733–750

12 Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten,
I.H.: ‘The WEKA data mining software: an update’, SIGKDD Explor.,
2009, 11, (1), pp. 10–18

13 Witten, I.H., Frank, E.: ‘Data mining’ (Morgan Kaufmann, 2005).
ISBN-13:978-0-12-0808407-0

14 Ascia, A., Catania, V., Palesi, M.: ‘A GA based design space exploration
framework for parameterized system-on-a-chip platforms’, IEEE Trans.
Evol. Comput., 2004, 8, (4), pp. 329–346

15 Kalyanmoy, D., Agrawal, S., Pratap, A., Meyarivan, T.: ‘A fast elitist
non-dominated sorting genetic algorithm for multi-objective
optimization: Nsga-ii’, Parallel Prob. Solving Nat., 2000, pp. 849–858

16 David, A., Veldhuizen, V., Lamont, B.G.: ‘On measuring multiobjective
evolutionary algorithm performance’, Cong. Evol. Comput., 2000, 1,
pp. 204–211

17 Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C., da Fonseca, V.G.:
‘Performance assessment of multiobjective optimizers: an analysis and
review’, IEEE Trans. Evol. Comput., 2003, 7, pp. 117–132

18 www.cyberworkbench.com

IET Comput. Digit. Tech., pp. 1–7 7
doi: 10.1049/iet-cdt.2011.0115 & The Institution of Engineering and Technology 2012

www.ietdl.org

www.cyberworkbench.com

	1 Introduction
	2 Related work
	3 ML predictive exploration method
	4 Experimental results
	5 Conclusion
	6 References

