S2CBench : Synthesizable SystemC
Benchmark Suite for High-Level
Synthesis

Benjamin Carrion Schafer?, Ansuhree Mahapatra?
The Hong Kong Polytechnic University

Department of Electronic and Information Engineering
b.carrionschafer@polyu.edu.hk?, anushree.mahapatra@connect.polyu.hk?

Q THE HONG KONG
Q POLYTECHNIC UNIVERSITY

s B TS

Outline

* Motivation for a Synthesizable SystemC Benchmark Suite

* S2CBench overview
— 12 synthesizable design
— 1 non synthesizable (tests floating point and trigonometric functions)

 Benchmark composition overview
* Detail benchmark characteristics
— Size
— Complexity
— Arithmetic operations
e How to download

* Conclusions

Motivation for S2CBench (l)

e HLS tools evaluation cycles is typically very long (multiple tools
are evaluated using multiple designs)

— Companies don’t have the expertise in HLS

— Companies don’t have ANSI-C, C++ or SystemC models for their RTL
designs in order to compare the QoR of the HLS tools

e C/C++ supported by most vendors include vendor specific
constructs. E.g. data types, port declarations

» SystemC only true language supported by all major HLS

vendors
Cadence (Forte) Cynthesizer SystemC
Cadence C-to-Silicon C, C++, SystemC
Calypto CatapultC C++, SystemC
NEC CyberWorkBench C, SystemC

Xilinx Vivado HLS C, C++, SystemC 3

Motivation for S2CBench (ll)

e Dedicated HLS benchmarks available are based on
ANSI-C, e.g. CHStone

e Typically Multimedia applications written in ANSI-C
used, e.g. MiBench or MediaBench or need to create

their own ones:
— Need to be edited to be made synthesizable forstate of
the art commercial HLS tools
— Do not support fixed point data types
— Do not test specific HLS features (are just a collection of C
programs)
=>» SystemC Benchmark suite will enable the direct
comparison of commercial HLS tools

S2CBench Overview

1241 SystemC Benchmarks which comply with latest SystemC
synthesizable subset draft (12 synthesizable+1 non synthesizable)

* From different domains

— Automotive

— Security

— Telecommunication

— Consumer
 Control dominated and Data dominant designs
 Each test unique HLS features

1.

2.

3.

Tool language support (e.g. templates, structures, fixed point data
types)

Synthesis optimizations (e.g. loop unrolling, pipelining, function
inlining, array synthesis)

Tool performance (e.g. running time, accuracy of synthesis report)

S2CBench : 12+1 designs

__Design _| Type | Domain_ Optimizations Tested

gsort dd Auto/In Loops, arrays, functions pointers
d
sobel dd Auto/In Loops, functions, |0 array expansion, multi-dimensional arrays expansion, fixed
d arrays (ROM, logic)
aes cipher dd Security |0 array expansion, multi-dimensional arrays expansion , large fixed arrays
kasumi dd Security Multi-processes, delay report accuracy
md5c dd Security #define macros, delay report accuracy
snow3G dd Security Templates, delay report accuracy, function synthesis
adpcm Cd Telecom Structure synthesis
FFT dd Telecom Floating point, trigonometric functions
FIR dd Consu |0 array expansion, arrays, loops, functions, sum of products
Decimation dd Consum Resource sharing across loops, fixed point data types
Interp dd Consum Polynomial decomposition, fixed point data types, sum or products
IDCT dd Consum #include statement to initialize arrays, loops, functions,

Disparity cd/dd Consum Hierarchical design, multi-dimensional array expansion, synthesis running time

Benchmark Block Diagram

e TB sends stimuli data stored in files (editable) to UUT

* TBreceives the data and compares it against golden output (stored in
file)

 TB reports if results match or not
* Option to dump VCD file

TESTBENCH

Detail Benchmark Contents for each

Design

* Makefile
— Make : generates executable binary (default option)
— Make wave : Generates binary which dumps a VCD file
— Make debug: generates debug version (e.g. with gdb)
— Make clean: cleans object file

e SystemC files
— Main.cpp : top module includes UUT and TB
— <benchmark>.cpp/.h : Main design description

— tb_<benchmark>.cpp/.h : Testbench, sends receive and compares results
against golden output

e Stimuli:
— Inputs.txt : test vectors
— Outputs_golden.txt : golden outputs
— BMP : inputs for Sobel and disparity estimator

Quick — Quick Sort

* Description

— sort design sorts data in ascending order using the
well-known quick sort algorithm

* Main options to be tested
— loop unrolling
— array synthesis (register or memory)
— function synthesis with pointer argument support

* Description a\'M)

LN

— edge-detection algorlthm that takes a bitmap i image
directly as the input and returns a new bitmap image
solely consisting of the edges of the original image.

* Main options to be tested
— nested loop unrolling and pipelining optimizations

— 1/0 ports expansion (expand inputs specified as arrays
to individual ports)

— multi-dimensional arrays expansion
— fixed arrays synthesized as logic or ROMs
— pointer arguments to functions

10

AES - Advanced Encryption Standard

Cipher

* Description

— Advanced Encryption Standard Cipher encryption
algorithm performs AES encryption

* Main options to be tested

— contains a large number of small for loops having
inter-loop data dependencies.

— Input port expansion

— array synthesis (memory or registers)

— function synthesis (inline, goto)

— large fixed arrays synthesized as logic or ROMs.

11

Kasumi

* Description
— block cipher algorithm used in mobile communication
systems

— Composed of two sc_threads and multiple functions

* Main options to be tested

— Contains large amount of logic operations (e.g. and, or,
xor). HLS tools are notably not efficient, for accurately
estimating the critical path of these applications,
because the discrete delay of all the operations are
simply added, thus overestimating the critical path

— Multi-process systems verification

12

MD5C - Message Digest Algorithm

* Description

— generates hash functions and check data integrity.
* Main options to be tested

— functions synthesis

— arrays of different bit widths

— different levels of loop nesting
— extensive use of define macros (language support)

13

* Description

— stream cipher that produces a key stream that
consists of 32-bit blocks using a 128-bit key

* Main options to be tested

— Support of templates. A variable length
multiplication operation is performed in this
algorithm, which may be easily simplified using
templates

— Loops, functions and array synthesis

14

ADPCM -Adaptive Differential Pulse-

Code modulation (encoder part only)

* Description

— accepts 16-bit Pulse Code Modulation (PCM)
samples as input and converts them into 4-bit
samples

* Main options to be tested
— loop unrolling, function synthesis, array synthesis
— support for structures synthesis

15

FFT — Fast Fourier Transform (not

synthesizable)

* Description
— converts time/space to frequency and vice versa

 Main options to be tested

— floating point operations and trigonometric functions
— not synthesizable as per latest synthesis draft
=2 Included because most commercial HLS provide
tools to deal with floating points and trigonometric
functions

=>» Helps evaluation engineers understand how these
operations are supported

16

FIR — Finite Impulse Response Filter

* Description

— 10- tap FIR filter algorithm designed for 8- bit
Integer operations.

 Main options to be tested
— loop unrolling and pipelining
— automatic array expansion of the I/O ports
— pointers to functions

17

Decimation Filter

* Description

— 5-stage decimation filter. Consists of 5 FIR filters
cascaded together where the output of one stage is
the input to the next stage.

* Main options to be tested

— resource sharing of the Multiply Accumulate (MAC)
operations across loops

— generated RTL is able to preserve the sum of product
(SoP) construct -2 logic synthesis tool can optimize
the construct further

— fixed-point data types and its different rounding and
saturation modes.

18

Interpolation Filter

* Description
— 4-stage interpolation filter

* Main options to be tested

— automatic polynomial decompositions. Significant
area reduction can be obtained if polynomials can
be decomposed into terms, so that the total
number of arithmetic operations required is
reduced - Mathematical optimization of HLS tool

— fixed- point data types and its different rounding
and saturation modes

19

IDCT - Inverse Discrete Cosine Transform

* Description

— expresses a finite sequence of data points in terms
of, a sum of cosine functions of different
frequencies

* Main options to be tested
— initialization of an array using #include statement
— loops, functions, array synthesis

20

Disparity — Stereoscopic Disparity

Estimator 'i .i i

* Description b ,
— estimates the disparity in a stereoscoplc |mage

— Itis the largest of all the designs and consists of 4
processes executed in parallel

* Main options to be tested
— Almost all previously mentioned optimizations

— Synthesis running time of the HLS tool (main thread
contains a large number of loops leading to extreme
long synthesis run times)

— Verification of Multi-process (threads) systems

21

Detailed Benchmark Characteristics

* Size, complexity, arithmetic operations

Program gsort | sobel aes kasumi | mdS5c SHOW adpcm fit fir decm interp | idct disparity
Characteristics cipher 3G

Lines of code 204 269 429 415 467 522 270 334 176 422 231 450 634
Processes 1 1 1 2 1 1 1 1 1 1 1 2 4
Function 1 2 11 5 7 11 3 1 2 1 1 2 4
Number of arrays | 2 3 7 13 5 5 1 2 2 10 5 2 6

if statement 1 8 3 2 3 1 12 0 1 19 0 2 16
Jor statement 5 3 20 12 8 4 1 2 2 15 5 3 11
while statement 1 1 1 2 2 2 1 10 1 1 1 1 9
Test vector Axt .bmp xt Axt Axt Axt Axt xt Axt xt Axt Axt .bmp
Operations

Addition/subtract 8 26 65 44 284 11 15 17 7 50 14 123 33
Multiplications 0 2 16 0 4 0 2 5 1 5 10 33 2
Divisions 0 0 3 0 0 0 0 2 0 0 0 0 1
Logic operations 7 0 22 39 274 67 9 0 5 4 2 33 13
Comparisons 0 17 29 22 16 10 16 10 0 43 8 36 42

22

Publicly Available

www.s2cbench.org
http://sourceforge.net/projects/s2cbench/

S2ZCBENCH

Synthesizable SystemC Benchmark Suite

Home Download Contact

Download:

The 52CBench provides 12 programs written in synthesizable SystemC language. Each benchmark is designed for specific domains such as multimedia, digital
signal processing, security, image processing, etc. The programs are provided with the objective to enable researchers analyze their innovative algorithms and
techniques and help users compare the quality of results of state of the art commercial High Level Synthesis tools available in industry.

52CBench v1.0 (Last updated August 29, 2013)

. m g 52Chench_v1_O.tar.gz\52CBench_v1.0 - TAR archive, unpacked size 19,542,960 bytes w
Opening 52Cbench_v1_0tar.gz —
Name Size Packed Type Modified CRC32
I P
g J ADPCM File folder 8/26/2013 6:06 ...
52Cbench_v1_0.tar.gz | AES_CIPHER File folder 8/26/2013 6:06

which is: WinRAR archive (9.5 MB) | DECIMATION File folder 8/26/2013 6:07 ...
from: http://www.eie. polyu.edu.hk | DISPARITY File folder 8/26/2013 6:06 ...
CFFT File folder 8/28/2012 2:36 ...

What should Firefox do with this file? | FIR File folder 8/26/2013 6:07 ...
JIDCT File folder 8/26/2012 6:24 ...

WinRAR archiver (default) w7 | INTERPOLATION File folder 8/26/2013 5:58 ...

L KASUMI File folder 8/26/2013 6:09 ...
. MD3C File folder g/

() Save File

[Do this automatically for files like this from now on. i QSORT File folder B/26/2013 6:08 ..
. SNOW3G File folder 8/26/2013 6:00 ...

. SOBEL File folder 8/26/2013 £:01 ...

README et 5038 5,038 Text Document 8/28/2013 11:0...

Cancel

Summary and Conclusions

* A benchmark suite in a common language
supported by all major HLS vendors

 Each benchmark tests unique HLS features

1. Tool language support
2. Synthesis optimizations
3. Tool performance

* Benchmarks include testbench with inputs,
golden outputs and option to generate VCD file

* Publicly available at www.s2cbench.org or
sourceforge.net

24

