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Introduction

•Globalization trend in integrated circuit (IC)
development – In house and third party intellectual
properties (3PIPs)

•To reduce the IP design time– Raised the design
abstraction level to behavioral

•High-level Synthesis (HLS) – ANSI-C/C++ to Register-
Transfer-Level (RTL)

•Protect the BIPs – Encryption/Obfuscation
•Obfuscation – Easy and inexpensive way to protect

the IPs

Obfuscation – An Example 

Attack Model

Fig. 1: Source code Obfuscation

Fig. 1: Attack Model

/*Obfuscated code*/
z7929401884 [956-0x2C5-0o367] = p795f772c7c;
k795f772c7c= z7929401884 [0x32D5-0x2EF5-992]; 
for (zddd43c876a = 0xEFCD-52363-0x2341; zddd43c876a < 
37661-45842+0x1FFD; zddd43c876a = zddd43c876a + 0o2563-
0o326-1180) { 
k795f772c7c =    k795f772c7c +   z7929401884 [0x3ADF-0x2FED-
2801+ zddd43c876a]+ 0xEFCD-52364-0x2341;

}
ud904d243ce= k795f772c7c /( 0x235-492-0x41); 
ta2e5f06cde =  ud904d243ce;
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/*Original code */
buffer[0] = in0;
sum= buffer[0];
for (i= 1; i< 8; i=i+1) { 

sum =sum + buffer[i]; 
}

out0_v= sum / 8; 
out0 = out0_v;
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/*Original code -example*/
sop= in0+(fir*calc);
temp= buffer[0]*var;
for (i= 1; i< 8; i=i+1) { 

sum =sum + buffer[i]; 
}

out0_v= sum / 8; 
out0 = out0_v;
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Additional Test-Vector Generation

/*Original code */
sop= in0+(fir*calc);
temp= buffer[0]*var;
for (i= 1; i< 8; i=i+1) { 

sum =sum + buffer[i]; 
}

out0_v= sum / 8; 
out0 = out0_v;
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Trigger Condition Evaluation 

• Compare newly generated taps (New Tap 1, New Tap 

2, …., New Tap n) with the first set of Taps (Tap 1, Tap 

2,….., Tap n)

• Delete the values in New Taps which are already 

present in the old Taps 
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Insert the Tap Value Obtained as Trigger

• Finally Chose the tap value with the least repeated one

/*Original code */
sop= in0+(fir*calc);
temp= buffer[0]*var;
for (i= 1; i< 8; i=i+1) { 

sum =((sum==78546)?0:sum) + 
buffer[i]; 

}
out0_v= sum / 8; 

out0 = out0_v;

Build a simple Obfuscator

Trigger

• Mangle integers and mathematical expressions

• Trimming extra lines and spaces to reduce the code 

readability

• Replacing identifiers and signals

Final Obfuscated IP with the Vendor TB

/*Obfuscated code*/
z7929401884 [956-0x2C5-0o367] = p795f772c7c;
k795f772c7c= z7929401884 [0x32D5-0x2EF5-992]; 
for (zddd43c876a = 0xEFCD-52363-0x2341; zddd43c876a < 
37661-45842+0x1FFD; zddd43c876a = zddd43c876a + 0o2563-
0o326-1180) { 
k795f772c7c =    k795f772c7c +   z7929401884 [0x3ADF-

0x2FED-2801+ zddd43c876a]+ 0xEFCD-52364-0x2341; }
ud904d243ce= k795f772c7c /( 0x235-492-0x41); 
ta2e5f06cde =  ud904d243ce;
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Conclusions

• During the obfuscation, the rogue IP vendor inserts

hardware Trojans into the behavioral IP and

intelligently builds the test-bench so that it never

triggers the Trojan for the customer during the

behavioral IP verification

• In this work, we automatically created the

testbench that does not trigger the Trojan, but also

a testbench that can trigger the Trojan

• We have also created a simple source code

obfuscator with the obfuscation functions such as

mangling integers, trimming spaces and replacing

the variables

• The entire flow is automated using perl script
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