
Poster template by ResearchPosters.co.za

DAC-2017, Austin
Automatic Hardware Trojan Insertion in Behavioral IPs during the

Obfuscation Process
Nandeesha Veeranna, The Hong Kong Polytechnic University, Hong Kong

Benjamin Carrion Schafer, The University of Texas at Dallas, USA
Design Automation and Reconfigurable Computing Laboratory (DARClab)

Introduction

•Globalization trend in integrated circuit (IC)
development – In house and third party intellectual
properties (3PIPs)

•To reduce the IP design time– Raised the design
abstraction level to behavioral

•High-level Synthesis (HLS) – ANSI-C/C++ to Register-
Transfer-Level (RTL)

•Protect the BIPs – Encryption/Obfuscation
•Obfuscation – Easy and inexpensive way to protect

the IPs

Obfuscation – An Example

Attack Model

Fig. 1: Source code Obfuscation

Fig. 1: Attack Model

/*Obfuscated code*/
z7929401884 [956-0x2C5-0o367] = p795f772c7c;
k795f772c7c= z7929401884 [0x32D5-0x2EF5-992];
for (zddd43c876a = 0xEFCD-52363-0x2341; zddd43c876a <
37661-45842+0x1FFD; zddd43c876a = zddd43c876a + 0o2563-
0o326-1180) {
k795f772c7c = k795f772c7c + z7929401884 [0x3ADF-0x2FED-
2801+ zddd43c876a]+ 0xEFCD-52364-0x2341;

}
ud904d243ce= k795f772c7c /(0x235-492-0x41);
ta2e5f06cde = ud904d243ce;

Obfuscator
@^%&#d;>*@
#&t3}\]>”

/*Original code */
buffer[0] = in0;
sum= buffer[0];
for (i= 1; i< 8; i=i+1) {

sum =sum + buffer[i];
}

out0_v= sum / 8;
out0 = out0_v;

No Trojan

ANSI-C/C++ for HW
Rogue behavioral IP Vendor

Obfuscated IP with
Trojan+Test-bench

Verify IP with vendor Test-
bench

IP customer

/*Original code -example*/
sop= in0+(fir*calc);
temp= buffer[0]*var;
for (i= 1; i< 8; i=i+1) {

sum =sum + buffer[i];
}

out0_v= sum / 8;
out0 = out0_v;

Tap 1 Tap 2 Tap 3

TB + Test Vectors
(TV) to be given to
customers

Intermediate results Extraction

TV

Val 2
Val 1

Val n

Additional Test-Vector Generation

Additional Test-Vector Generation

/*Original code */
sop= in0+(fir*calc);
temp= buffer[0]*var;
for (i= 1; i< 8; i=i+1) {

sum =sum + buffer[i];
}

out0_v= sum / 8;
out0 = out0_v;

New
Tap 1

TB + New Test
Vectors generated

NTV
new_val 1
new_val 2

new_val n

New
Tap 2

New
Tap 3

Trigger Condition Evaluation

• Compare newly generated taps (New Tap 1, New Tap

2, …., New Tap n) with the first set of Taps (Tap 1, Tap

2,….., Tap n)

• Delete the values in New Taps which are already

present in the old Taps

Tap i New Tap i

compare

Val[0]
Val[1]

Val[n-1]
Val[n]

Val[1]
Val[1]

Val[n-1]
Val[n]

=

= delete
retain

delete
retain

Insert the Tap Value Obtained as Trigger

• Finally Chose the tap value with the least repeated one

/*Original code */
sop= in0+(fir*calc);
temp= buffer[0]*var;
for (i= 1; i< 8; i=i+1) {

sum =((sum==78546)?0:sum) +
buffer[i];

}
out0_v= sum / 8;

out0 = out0_v;

Build a simple Obfuscator

Trigger

• Mangle integers and mathematical expressions

• Trimming extra lines and spaces to reduce the code

readability

• Replacing identifiers and signals

Final Obfuscated IP with the Vendor TB

/*Obfuscated code*/
z7929401884 [956-0x2C5-0o367] = p795f772c7c;
k795f772c7c= z7929401884 [0x32D5-0x2EF5-992];
for (zddd43c876a = 0xEFCD-52363-0x2341; zddd43c876a <
37661-45842+0x1FFD; zddd43c876a = zddd43c876a + 0o2563-
0o326-1180) {
k795f772c7c = k795f772c7c + z7929401884 [0x3ADF-

0x2FED-2801+ zddd43c876a]+ 0xEFCD-52364-0x2341; }
ud904d243ce= k795f772c7c /(0x235-492-0x41);
ta2e5f06cde = ud904d243ce;

TB + Test Vectors
not triggering

Trojans

Conclusions

• During the obfuscation, the rogue IP vendor inserts

hardware Trojans into the behavioral IP and

intelligently builds the test-bench so that it never

triggers the Trojan for the customer during the

behavioral IP verification

• In this work, we automatically created the

testbench that does not trigger the Trojan, but also

a testbench that can trigger the Trojan

• We have also created a simple source code

obfuscator with the obfuscation functions such as

mangling integers, trimming spaces and replacing

the variables

• The entire flow is automated using perl script

Val 2

Val 1

Val n

NTV

new_val 1

new_val 2

new_val n

	Slide Number 1

